The content of toxic elements in soil-plant system based on ombrotrophic peat with the copper smelting slag recycling waste

Document Type : Original Research Paper


A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of Russian Academy of Sciences, 15 Akad. Vonsovsky street, Yekaterinburg, Russia, 620110



Mining wastes occupy huge areas around the world, therefore, research aimed at their disposal and reclamation of disturbed territories is very relevant. We studied artificial soil based on neutralized ombrotrophic peat (Histosols Fibric) with different content (5% and 10% by weight) of copper smelting slag recycling waste ("technical sand"): finely dispersed (less than 0.05 mm), mechanically activated material. We analyzed the content of toxic element in peat, underground and aboveground parts of lawn grasses and potatoes. The coefficients of concentration and accumulation of elements were calculated. It was found that the introduction of 5% waste leads to exceeding the maximum permissible concentrations and approximately permissible concentrations (the regulated values for Russia) for zinc, copper, arsenic, antimony, and lead. The molybdenum content exceeds the Soil Quality Guidelines accepted in Canada, for selenium the values are at the limit level. The content of zinc, copper, cobalt, arsenic, molybdenum, antimony is significantly reduced (by 2-3 times) during the growing season. Ecological assessment of agricultural plants grown on artificial soil with 5% of "technical sand" showed that there are no excesses of the maximum permissible levels for any regulated element for potato tubers; a slight excess of arsenic was detected for lawn grasses. We additionally assessed the safety of potato tubers using the maximum permissible concentrations for food and established an excess of cadmium (3.4 times on the peat, with the addition of waste almost unchanged) and zinc (1.6 times on peat, 2.8 times for a peat with 10% waste).


Abdu, N., Abdullahi, A.A. and Abdulkadir, A. (2017). Heavy metals and soil microbes. Environ. Chem. Lett., 15, 65-84 (2017). doi: 10.1007/s10311-016-0587-x
Adamovich, T.A., Zaitsev, M.A. and Beresneva, E.V. (2020). The study of sorption properties of peat deposits in the Kirov region. Khimiya Rastitel’nogo Syr’ya, 2, 299-305. doi: 10.14258/jcprm.2020025550
Antoninova, N., Shubina, L., Sobenin, A. and Usmanov, A. (2020). Modern aspects of disturbed land reclamation. E3S Web Conf., 192, 03019. doi: 10.1051/e3sconf/202019203019
Boguta, P., D’Orazio, V., Sokołowska Z. and Senesi N. (2016). Effects of selected chemical and physicochemical properties of humic acids from peat soils on their interaction mechanisms with copper ions at various pHs. J. Geochem. Explor., 168, 119-126. doi: 10.1016/j.gexplo.2016.06.004
CCME. Canadian Council for Ministers for the Environment. Canadian Environmental Quality Guidelines. Retrieved July 29, 2022, from
Chiroma, T.M., Ebewele, R.O. and Hymore, F.K. (2014). Comparative assessement of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. IRJES, 3(2), 1-9.
Crommentuijn, T., Sijim, D., de Bruijin, J., van den Hoopa, M., van Leeuwena, K. and van de Plasscheac, E. (2000). Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. J. Environ. Manage., 60, 121-143. doi:10.1006/jema.2000.0354
Diaconu, M., Vasile Pavel, L., Hlihor R-M., Rosca M., Ionela Fertu D., Lenz M., Xavier Corvini P. and Gavrilescu M. (2020). Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation. New Biotechnology, 56, 130-139. doi: 10.1016/j.nbt.2020.01.003
Fijalkowski, K., Kacprzak, M., Grobelak, A. and Placek, A. (2012). The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska, 15(1), 81-92.
Filimon, M.N., Caraba, I.V., Popescu, R., Dumitrescu, G., Verdes, D., Petculescu Ciochina, L. and Sinitean, A. (2021). Potential Ecological and Human Health Risks of Heavy Metals in Soils in Selected Copper Mining Areas–A Case Study: The Bor Area. Int. J. Environ. Res. Public Health, 18(4), 1516. doi:10.3390/ijerph18041516
Goyal, D., Yadav, A., Prasad, M., Bahadur Singh, T., Shrivastav, P., Ali, A., Kumar Dantu, P. and Mishra, S. (2020). Effect of Heavy Metals on Plant Growth: An Overview. (In: M. Naeem, A. Ansari & S. Gill (Eds), Contaminants in Agriculture. Cham: Springer).
Guman, O.M., Makarov, A.B. and Wegner-Kozlova, E.O. (2020). Technogenic formations as recultivation material. Technosphere management, 3(4), 447-461. doi: 10.34828/UdSU.2020.35.32.004
Hou, S., Zheng, N., Tang, L., Ji, X. and Li, Y. (2019). Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess., 191, 634. doi: 10.1007/s10661-019-7793-5
Karbassi, S., Nasrabadi, T. and Shahriari, T. (2016). Metallic pollution of soil in the vicinity of National Iranian Lead and Zinc (NILZ) Company. Environ. Earth Sci., 75, 1433. doi: 10.1007/s12665-016-6244-7
Kotelnikova, A.L. (2012). On mobile forms of heavy metals of copper-smelting slag. Tr. IGG UrO RAN, 159, 96-98. 
Kotelnikova, A.L. and Ryabinin, V.F. (2018). The composition features and perspective of use for the copper slag recycling waste. Litosfera, 18(1), 133-139. doi: 10.24930/1681-9004-2018-18-1-133-139
Luo, X., Wu, C., Lin, Y., Li, W., Deng, M., Tan, J. and Xue, S. (2023). Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization, J. Environ. Sci., 125, 662-677. doi: 10.1016/j.jes.2022.01.029
Magnuson, M.L, Kelty, C.A. and Kelty, K.C. (2001). Trace metal loading on water-borne soil and dust particles characterized through the use of Split-flow thin-cell fractionation. Anal. Chem., 73(14), 3492-3496. doi: 10.1021/ac0015321
Malyshev, Yu.N. (2013). Development of the mining complex in the context of heightened competition in the world markets for mineral resources. Mineral resources of Russia. Economics and Management, 1, 17-19.
Mikheeva, I.V. and Androkhanov, V.A. (2022). Physical properties of technosols at brown coal mine wastes in Eastern Siberia. Soil Tillage Res., 217, 105264. doi:10.1016/j.still.2021.105264
Minkina, T.M., Mandzhieva, S.S., Chaplygin, V.A., Nazarenko, O.G., Maksimov, A.Yu., Zamulina, I.V., Burachevskaya, M.V. and Sushkova, S.N. (2018). Accumulation of Heavy Metals by Forb Steppe Vegetation According to Long-Term Monitoring Data. Arid Ecosyst., 8, 190-202. doi: 10.1134/S2079096118030058
MRL (1987). Temporary maximum permissible level (MRL) of the content of some chemical elements and gossypol in feed for farm animals and feed additives. Rosselkhoznadzor regulatory document. 123-4/281-8-87 (Moscow: Rosselkhoznadzor)
Mayans, B., Pérez-Esteban, J., Escolástico, C., Eymar, E. and Masaguer, A. (2019). Evaluation of Commercial Humic Substances and Other Organic Amendments for the Immobilization of Copper Through 13C CPMAS NMR, FT-IR, and DSC Analyses. Agronomy, 9, 762. doi: 10.3390/agronomy9110762
Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci., 2019, 5794869. doi:10.1155/2019/5794869
Rahmonov, O., Cabała, J. and Krzysztofik, R. (2021). Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant. Biology, 10(12), 1242. doi:10.3390/biology10121242
Rakesh Sharma, M.S. and Raju, N.S. (2013). Correlation of heavy metal contamination with soil properties of industrial areas of Mysore, Karnataka, India by cluster analysis. Int. Res. J. Environment Sci., 2(10), 22-27.
SanPiN (2002). Sanitary rules and regulations. (Moscow: Ministry of Health of Russia).
SanPiN 1.2.3685-21. (2021). Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. Retrieved September 04, 2022, from
Selyukova, S.V. (2020). Heavy metals in agrocenoses. Achievements of Science and Technology of AIC, 34(8), 85-93. doi: 10.24411/0235-2451-2020-10815
Semenkov, I. and Korolyeva, T. (2019). World Experience in Rationing the Content of Chemical Elements in the Soil. Ecol. Ind. Russ., 23(2), 62-67. doi:10.18412/1816-0395-2019-2-62-67
Sun, W., Ji, B., Khoso, S.A., Tang, H., Liu, R., Wang, L. and Hu, Y. (2018). An extensive review on restoration technologies for mining tailings. Environ. Sci. Pollut. Res., 25, 33911-33925. doi: 10.1007/s11356-018-3423-y
Tamakhina, A.Ya., Dzakhmisheva, I.D. and Akbasheva, A.A. (2020). Feature of Syngenetic Succession in Technologically Disturbed Landscapes of Kabardino-Balkaria. IOP Conf. Ser.: Earth Environ. Sci., 459, 022020. doi:10.1088/1755-1315/459/2/022020
Tang, J., Liang, J., Yang, Y., Zhang, S., Hou, H. and Zhu, X. (2022). Revealing the Structure and Composition of the Restored Vegetation Cover in Semi-Arid Mine Dumps Based on LiDAR and Hyperspectral Images. Remote Sens., 14(4), 978. doi: 10.3390/rs14040978
VetPin 13.7.1-00. (2001). Veterinary rules and regulations. (Moskow).
Zhang, X., Huang, R., Cao, Y. and Wang, C. (2021). Rapid conversion of red mud into soil matrix by co-hydrothermal carbonization with biomass wastes.  J. Environ. Chem. Eng., 9(5), 106039. doi:10.1016/j.jece.2021.106039
Zolotova, E. (2021), Studies of Soils and Vegetation on Non-ferrous Metallurgy Slag Dumps. IJBSM, 12(1), 040-046. doi: 10.23910/1.2021.2178a