Performance of Hybrid Constructed Wetland System for the Treatment of Secondary Wastewater Effluent under Arid Climate Conditions (Southeastern Algeria): A Laboratory Scale Investigation

Document Type : Original Research Paper


1 Laboratory of Water and Environmental Engineering in the Saharan Region, Faculty of applied sciences, Department of civil and hydraulic engineering, University of Kasdi Merbah Ouargla, PO Box 511, Ouargla, 30000, Algeria

2 Laboratory of Water and Environmental Engineering in the Saharan Region, Ecole Normale Supérieure, University of Kasdi Merbah Ouargla, PO Box 511, 30000, Ouargla, Algeria

3 Research Laboratory in Subterranean and Surface Hydraulics, University of Biskra, 07000, Biskra, PO Box 145 RP, Biskra, 07000, Algeria

4 Hydraulic and Civil Engineering Department, University of El Oued, PO Box 789, El Oued, 39000, Algeria

5 Laboratoire de Protection des Ecosystèmes en zones Arides et Semi-Arides, Department of Technical Sciences, University of Kasdi Merbah Ouargla, PO Box 511, Ouargla, 30000, Algeria

6 Laboratory of Water and Environmental Engineering in the Saharan Region, University of Kasdi Merbah Ouargla, PO Box 511, Ouargla, 30000, Algeria

7 University of Amine Elokkal El Hadj Moussa Eg Akhamouk Tamanghasset, 11000 Tamanrasset

8 Laboratory of Water and Environment, Bioresource, Physical-Geochemistry, Legislation and Development Socio-Economic, University of Tamanghasset, Algeria

9 University of El Oued, PO Box 789, El Oued, 39000, Algeria



Constructed wetland (CWs) systems offer an economical alternative to wastewater (WW) treatment in developing countries. So this study investigated lab-scale hybrid constructed wetlands (HCWs) with plant species Canna indica and Typha latifolia in mono and mixed culture for removing organic matter and nutrients from municipal wastewater (MWW) under arid climatic conditions. A HCW system consists of a storage tank feeding four series of vertical flow constructed wetlands (VFCWs) followed by horizontal flow-constructed wetlands (HFCWs). The results indicate that the planted beds performed better in removing suspended solids (TSS) (89.93% by Typha latifolia), biochemical oxygen demand (BOD5) (95.01% by mixed-culture), chemical oxygen demand (COD) (90.77 by Typha latifolia), nitrite (NO2-) (89.99% by mixed-culture), ammonium nitrogen (NH4+) (99.98 % by mixed-culture), and orthophosphate (PO43-) (87.22% by Typha latifolia) as compared to the unplanted bed for the same parameters (87.85%, 92.87%, 77.35%, 85.30%, 99.75%,  and 80.95%), respectively. The nitrate (NO3−) concentration in the effluent recorded the highest increase in the VFCW unit planted with mixed culture from 0.44 to 0.999 mg/l and decreased in the second stage to 0.588 mg/l at the HCW outlet. The mean values of the testing parameters in different HCW systems were not significant between the mono and mixed culture (P > 0.05), with a significant difference (P <0.05) between the VFCWs and HFCWs. The finding of this study demonstrated that Canna indica and Typha latifolia have been effective in WW treatment by HCW systems.


AFNOR. (1999). Association Française de Normalisation. Qualité de l’eau: collection, environnement. Paris-La Défense, p 1733 (NF T90-105).
Almeida, A., Jóźwiakowski, K., Kowalczyk-Juśko, A., Bugajski, P., Kurek, K., Carvalho, F., ... & 
Gajewska, M. (2020). Nitrogen removal in vertical flow constructed wetlands: influence of bed depth and high nitrogen loadings. Environmental technology, 41(17), 2196-2209.‏
Almuktar, S. A., Abed, S. N. and Scholz, M. (2018). Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review. Environmental Science and Pollution Research, 25(24), 23595-23623.‏
Amiri, K., Bekkari, N. E., Débbakh, A. E., Chaib, W. and Kherifi, W. (2022). The efficiency of household sewage treatment by Wastewater garden technique in arid regions, case of WWG of Temacine, Algeria. Journal Algérien des Régions Arides, 14(2), 18-31.‏
Amiri, K., Hartani, T. and  Zeddouri, A. (2019). The assessment of an integrated bio-filter systems for the wastewaters treatment in arid regions (Touggourt, Algeria). Management of Environmental Quality: An International Journal.‏
Ávila, C., Bayona, J. M., Martín, I., Salas, J. J. and García, J. (2015). Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecological Engineering, 80, 108-116.‏
Ayaz, S.Ç., Aktaş, Ö., Findik, N. and Akça, L. (2012). Phosphorus removal and effect of adsorbent type in a constructed wetland system. Desalination and Water Treatment 37(1-3): 152–159.
Bastian, R. K. and Hammer, D. A. (2020). The use of constructed wetlands for wastewater treatment andrecycling. In Constructed wetlands for water quality improvement (pp. 59-68). CRC Press.‏
Bebba, A.A., Labed, I. and Zeghdi, S. (2019). Purification Performance of Typha Latifolia, Juncus Effusus and Papyrus Cyperus in Arid Climate: Influence of Seasonal Variation. J. Water .Chem. Technol.,41, 396–401.
Benguergoura, L.S, Remini, B. (2014). The releases of wastewater in the Oued Righ Valley: the palm groves in decline. Desalination Water Treat 52:2187–2192
Białowiec, A., Albuquerque, A. and Randerson, P. F. (2014). The influence of evapotranspiration on vertical flow subsurface constructed wetland performance. Ecological Engineering, 67, 89-94.‏
Chen, S. C., Jan, M. Y., Lin, K. L., Chao, S. L. and Liao, C. S. (2017). Sustainability of constructed wetland under the impact of aquatic organisms overloading. Sustainability, 9(5), 863.
Chyan, J. M., Huang, S. C. and Lin, C. J. (2017). Impacts of salinity on degradation of pollutions in hybrid constructed wetlands. International Biodeterioration & Biodegradation, 124, 176-187.‏
‏Collivignarelli, M. C., Carnevale Miino, M., Gomez, F. H., Torretta, V., Rada, E. C. and Sorlini, S. (2020). Horizontal flow constructed wetland for greywater treatment and reuse: an experimental case. International Journal of Environmental Research and Public Health, 17(7), 2317.‏
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., ... and Bradford, M. (2011). Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global change biology, 17(11), 3392-3404.‏
Cossu, R., Lai, T. and Sandon, A. (2012). Standardization of BOD5/COD ratio as a biological stability index for MSW. Waste management, 32(8), 1503-1508.‏
De Lille, M. V., Cardona, M. H., Xicum, Y. T., Giacoman-Vallejos, G. and Quintal-Franco, C. A. (2021).  Hybrid constructed wetlands system for domestic wastewater treatment under tropical climate: Effect of recirculation strategies on nitrogen removal. Ecological Engineering, 166, 106243.‏
Dias, S., Mucha, A. P., Duarte Crespo, R., Rodrigues, P. and Almeida, C. (2020). Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse. International journal of environmental research and public health, 17(22), 8592.
DIN EN 26777 : 1993–04 ; Qualité de l’eau ; dosage des nitrites ; méthode par spectrométrie d’absorption moléculaire [ISO 6777: 1984].
Edokpayi, J. N., Odiyo, J. O. and Durowoju, O. S. (2017). Impact of wastewater on surface water 
quality in developing countries: a case study of South Africa. Water quality, 10, 66561.‏
El Fanssi, S., Ouazzani, N. and Mandi, L. (2019). Effectiveness of domestic wastewater treatment using a constructed wetlands and reuse tests of treated wastewater in rural area of Morocco. Geo Eco Trop., 43, 385-393.‏
Fernandez-Fernandez, M. I., Vega, P. T., Jaramillo-Morán, M. A. and Garrido, M. (2020). Hybrid 
constructed wetland to improve organic matter and nutrient removal. Water, 12(7), 2023.‏
Franchino, M., Comino, E., Bona, F. and Riggio, V. A. (2013). Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere, 92(6), 738-744.‏
Gholipour, A. and Stefanakis, A. I. (2021). A full-scale anaerobic baffled reactor and hybrid constructed wetland for university dormitory wastewater treatment and reuse in an arid and warm climate. Ecological Engineering, 170, 106360.‏
Gizińska-Górna, M., Jóźwiakowski, K. and Marzec, M. (2020). Reliability and efficiency of pollutant removal in four-stage constructed wetland of SSVF-SSHF-SSHF-SSVF type. Water, 12(11), 3153.‏
Gouaidia, L., Guefaifia, O., Boudoukha, A., LaidHemila, M. and Martin, C. (2012). Évaluation de la salinité des eaux souterraines utilisées en irrigation et risques de dégradation des sols: exemple de la plaine de Meskiana (Nord-Est Algérien). Physio-Géo. Géographie physique et environnement, (Volume 6), 141-160.‏
Hammadi, B., Hadj Seyd, A. and Bebba, A. A. (2019). Performance assessment of nitrogen pollution purification by phytodepuration: case of Temacine pilot station (Algeria). International Journal of Environmental Science and Technology, 16(11), 6647-6656.
Herrera-Melián, J. A., Mendoza-Aguiar, M., Guedes-Alonso, R., García-Jiménez, P., Carrasco-Acosta, M. and Ranieri, E. (2020). Multistage horizontal subsurface flow vs. hybrid constructed wetlands for the treatment of raw urban wastewater. Sustainability, 12(12), 5102.‏
Belkaçem, H., Abdelhafidh, D. B. A., Zineb, H. and Saad, Z. (2013). Gardens planted with macrophytes filters, purification performance in an arid climate. Pilot station of Témacine, Ouargla (Algeria). International Letters of Chemistry, Physics and Astronomy, 8, 259-268.‏
Hammer, D. A. and Knight, R. L. (1994). Designing constructed wetlands for nitrogen removal. Water Science and Technology, 29(4), 15-27.‏
He, Y., Peng, L., Hua, Y., Zhao, J. and Xiao, N. (2018). Treatment for domestic wastewater from university dorms using a hybrid constructed wetland at pilot scale. Environmental Science and Pollution Research, 25(9), 8532-8541.‏
International Organization for Standardization, (1989). ISO 6060:1989-Water Quality —Determination of the Chemical Oxygen Demand. Available online: 
International Organization for Standardization, (2004). ISO 6878:2004-Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method. Available online: 
International Organization for Standardization, (1984). ISO 7150-1:1984-Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method. Available online: 
Jehawi, O. H., Abdullah, S. R. S., Kurniawan, S. B., Ismail, N. I., Idris, M., Al Sbani, N. H., ... and  Hasan, H. A. (2020). Performance of pilot Hybrid Reed Bed constructed wetland with aeration system on nutrient removal for domestic wastewater treatment. Environmental Technology & Innovation, 19, 100891.‏
JORA. (2006). Journal officiel de la république algérienne. Décret Exécutif n° 06-141 du 20 Rabie El Aouel 1427 correspondant, section 1, article 3
Kadlec, R.H. and Knight, R.L. (1996) Treatment Wetlands. Lewis Publishers, Boca Raton, 893 p.
Kadlec, R.H. and Wallace, S. (2008) Treatment Wetlands. CRC Press, Florida.
Karungamye, Petro. (2022). Potential of Canna indica in Constructed Wetlands for Wastewater 
Treatment: A Review. Conservation. 2. 499-513. 10.3390/conservation2030034.
Kim, B., Gautier, M., Simidoff, A., Sanglar, C., Chatain, V., Michel, P. and Gourdon, R. (2016). pH and Eh effects on phosphorus fate in constructed wetland’s sludge surface deposit. Journal of environmental management, 183, 175–181.
Kipasika, H. J., Buza, J., Smith, W. A. and Njau, K. N. (2016). Removal capacity of faecal pathogens from wastewater by four wetland vegetation: Typha latifolia, Cyperus papyrus, Cyperus alternifolius and Phragmites australis.‏
Labed, B., Bebba, A. A. and Gherraf, N. (2014). Phytoremediation performance of urban wastewater by the plant Juncus effusus in an arid climate. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(6), 95-103.‏
Lavrnić, S., Zapater Pereyra, M., Cristino, S., Cupido, D., Lucchese, G., Pascale, M. R., ... and Mancini, M. (2020). The potential role of hybrid constructed wetlands treating university wastewater—experience from northern Italy. Sustainability, 12(24), 10604.‏
Lee, C. G., Fletcher, T. D. and Sun, G. (2009). Nitrogen removal in constructed wetland systems. 
Engineering in life sciences, 9(1), 11-22.‏
Mahmood, Q., Pervez, A., Zeb, B. S., Zaffar, H., Yaqoob, H., Waseem, M., Zahidullah. and Afsheen, S. (2018). Corrigendum to “Natural Treatment Systems as Sustainable Ecotechnologies for the 
Developing Countries”. BioMed research international, 2018, 4761769.
Metcalf, L. (2003). Wastewater engineering : Treatment and reuse. Metcalf & Eddy Inc. McGraw-Hill Inc., New York.Mohammed, A. N. and ElBably, M. A. (2016). Technologies of domestic wastewater treatment and reuse: options of application in developing countries. JSM Environ Sci Ecol, 4(3), 1033.‏
Nguyen, X. C., Chang, S. W., Nguyen, T. L., Ngo, H. H., Kumar, G., Banu, J. R., Vu, M.C., Le, H.S. and Nguyen, D. D. (2018). A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models. Journal of environmental management, 222, 378-384.‏
NMO, (2019). National Meteorological Office, Sidi Mahdi Touggourt Algeria.ONA, (2020). Office National de l’Assainissement, (National Office of Sanitation).
Pinninti, R., Kasi, V., Sallangi, L. P., Landa, S. R., Rathinasamy, M., Sangamreddi, C. and Dandu Radha, P. R. (2022). Performance of Canna Indica based microscale vertical flow constructed wetland under tropical conditions for domestic wastewater treatment. International Journal of Phytoremediation, 24(7), 684-694.‏
Rahmadyanti, E. and Audina, O. (2020). The performance of hybrid constructed wetland system for treating the batik wastewater. Journal of Ecological Engineering, 21(3).‏
Rajasulochana, P. and Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review. Resource-Efficient Technologies, 2(4), 175-184.‏
Rani, N. and Pohekar, K. N. (2021). Assessment of Hybrid Subsurface Flow Constructed Wetland 
Planted with Arundo Donax for the Treatment of Domestic Wastewater at Different Hydraulic 
Retention Time. Journal of Water Chemistry and Technology, 43(2), 178-183.‏
Rasheed, A. M., Mansoor, M. M. A., Ahmath, M. H. A. and Shameer, S. M. (2014). Nutrient Removal in Hybrid Constructed Wetlands. Int. J. Sci. Eng. Res, 5, 1004-1006.‏
Redmond, E. D., Just, C. L. and Parkin, G. F. (2014). Nitrogen removal from wastewater by an aerated subsurface‐flow constructed wetland in cold climates. Water Environment Research, 86(4), 305313.‏
Rehman, F., Pervez, A., Khattak, B. N. and Ahmad, R. (2017). Constructed wetlands: perspectives of the oxygen released in the rhizosphere of macrophytes. CLEAN–Soil, Air, Water, 45(1).‏
Rousso, B. Z., Pelissari, C., Santos, M. O. D. and Sezerino, P. H. (2019). Hybrid constructed wetlands system with intermittent feeding applied for urban wastewater treatment in South Brazil. Journal of Water, Sanitation and Hygiene for Development, 9(3), 559-570.‏
Saeed, T., Miah, M. J., Majed, N., Hasan, M. and Khan, T. (2020). Pollutant removal from landfill leachate employing two-stage constructed wetland mesocosms: co-treatment with municipal sewage. Environmental Science and Pollution Research, 27(22), 28316-28332.‏
Saeed, T. and Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of environmental management, 112, 429-448.‏
Saeed, T. and Sun, G. (2011). Enhanced denitrification and organics removal in hybrid wetland columns: comparative experiments. Bioresource technology, 102(2), 967-974.‏
Sandri, D. and Reis, A. P. (2021). Performance of constructed wetland system using different species of macrophytes in the treatment of domestic sewage treatment. Revista Engenharia na Agricultura-REVENG, 29, 429-447.‏
Šereš, M., Innemanová, P., Hnátková, T., Rozkošný, M., Stefanakis, A., Semerád, J. and Cajthaml, T. (2021). Evaluation of hybrid constructed wetland performance and reuse of treated wastewater in agricultural irrigation. Water, 13(9), 1165.‏
Sharma, G. and Brighu, U. (2014). Performance analysis of vertical up-flow constructed wetlands for secondary treated effluent. APCBEE procedia, 10, 110-114.‏
Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S. and Janssens, I. (2015). Sensitivity of 
decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. Journal of Advances in Modeling Earth Systems, 7(1), 335-356.‏
Stefanakis, A. I. (2020). Constructed wetlands: description and benefits of an eco-tech water treatment system. In Waste Management: Concepts, Methodologies, Tools, and Applications (pp. 503-525). IGI Global.‏
Stefanakis, A., Akratos, C. S. and Tsihrintzis, V. A. (2014). Vertical Flow Constructed Wetlands: Eco-Engineering Systems for Wastewater and Sludge Treatment, Amsterdam: Elsevier Science 392.
Tabouche, N. and Achour, S. (2010). Etude de la qualité des eaux souterraines de la région orientale du Sahara septentrional algérien. LARHYSS Journal P-ISSN 1112-3680/E-ISSN 2521-9782, (3).‏
Tang, X., Huang, S., Scholz, M. and Li, J. (2009). Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water, air, and soil pollution, 197(1), 61-73.‏
Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the total environment, 380(1-3), 48-65.‏
Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience.
Environmental science & technology, 45(1), 61-69.‏
Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: A review. Ecological engineering, 73, 724-751.‏
Vymazal, J. (2017). The use of constructed wetlands for nitrogen removal from agricultural drainage: A review. Scientia agriculturae bohemica, 48(2), 82-91.‏
Vymazal, J. (2018) Constructed Wetlands for Wastewater Treatment. Reference Module in Earth Systems and Environmental Sciences. Encyclopedia of Ecology 765-776.‏
Vymazal, J. and Kröpfelová, L. (2015). Multistage hybrid constructed wetland for enhanced removal of nitrogen. Ecological Engineering, 84, 202-208.‏
Waly, M. M., Ahmed, T., Abunada, Z., Mickovski, S. B. and Thomson, C. (2022). Constructed wetland for sustainable and low-cost wastewater treatment. Land, 11(9), 1388.‏
Wang, J., Tai, Y., Man, Y., Wang, R., Feng, X., Yang, Y. ... & Cai, N. (2018). Capacity of various 
single-stage constructed wetlands to treat domestic sewage under optimal temperature in Guangzhou City, South China. Ecological Engineering, 115, 35-44.‏
Wang, R., Baldy, V., Périssol, C. and Korboulewsky, N. (2012). Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations. Journal of environmental management, 95, S158-S164.‏
Wang, M., Zhang, D. Q., Dong, J. W. and Tan, S. K. (2017). Constructed wetlands for wastewater treatment in cold climate — A review. Journal of Environmental Sciences, 57, 293-311.‏
Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J. and Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource technology, 175, 594-601.‏
Xu, Q. and Cui, L. (2019). Removal of COD from synthetic wastewater in vertical flow constructed 
wetland. Water Environment Research, 91(12), 1661-1668.‏
Yousaf, A., Khalid, N., Aqeel, M., Noman, A., Naeem, N., Sarfraz, W., ... and Khalid, A. (2021). Nitrogen dynamics in wetland systems and its impact on biodiversity. Nitrogen, 2(2), 196-217.‏
Zhang, L. Y., Zhang, L., Liu, Y. D., Shen, Y. W., Liu, H. and Xiong, Y. (2010). Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination, 250(3), 915-920.‏
Zurita, F. and White, J. R. (2014). Comparative study of three two-stage hybrid ecological wastewater treatment systems for producing high nutrient, reclaimed water for irrigation reuse in developing countries. Water, 6(2), 213-228