Impact of Wastewater on Water Quality and Fish Community in the Tolych River, Perm Krai, Russia

Document Type : Original Research Paper


1 Perm State University, 15, Bukireva st., Perm, 614990, Russia

2 Khabarovsk branch of VNIRO (“KhabarovskNIRO”), 13a Amurski blvd., Khabarovsk, 680038, Russia



Boreal freshwater ecosystems are highly sensitive to pollution, but too little information is available on the use of both biotic and chemical indicators for estimation of the effect of wastewater on boreal rivers and streams. The purpose of this study was to assess the wastewater impact on the boreal river (Perm Krai, Russia).  Physicochemical parameters of major ions and trace elements were detected with a field portable unit, capillary electrophoresis, and ICP-MS. Fish data was collected by gillnets. To evaluate the level of pollution from the Tolych River upstream to downstream, we calculated heavy metal evaluation index (HEI), ecological risk index (ERI), and index of biotic integrity (IBI). The anthropogenic impact from upstream to downstream showed the range from a very high to medium level of pollution by ERI and from a high to medium level by HEI values, where most of the studied major ions and trace elements often exceeded aquatic life limits. We found significant thermal pollution of the observed river with the decreasing temperature gradient from pollution source down to the river mouth due to hydromorphological factors. Observed thermal pollution leads to the absence of thermally sensitive cold-water fish species and the abundance of ecologically flexible fish species. The water quality assessed by biotic IBI index showed low and very low quality of lower reach of the studied river, which contradicts the results of assessment by HEI and ERI indices.  The results show the importance of using aquatic organisms as bioindicators for assessing ecological water quality.


Aazami, J., Esmaili-Sari, A., Abdoli, A., Sohrabi, H. and Van den Brink, P. J. (2015). Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices. J Environ Health Sci Engineer, 13, 29.
Abdel-Satar, A. M., Ali, M. H. and Goher, M.E. (2017). Indices of Water Quality and Metal Pollution of Nile River. Egypt. J. Aquat. Res., 43, 21-29.  
Aleksander-Kwaterczak, U., Plenzler, D. (2019). Contamination of small urban watercourses on the example of a stream in Krakow (Poland). Environ. Earth Sci., 78, 530.
Ali, D., Almarzoug, M. H., Al Ali, H., Samdani, M. S., Hussain, S. A. and Alarifi, S. (2020). Fish as bio indicators to determine the effects of pollution in river by using the micro-nucleus and alkaline single cell gel electrophoresis assay. J. King Saud Univ. Sci., 32, 2880-2885. 
Belkin, P. (2020). Chemical Composition of Spring Discharge in the Area of Mining Waste Storage and Potassium Salt Enrichment. Bulletin of the Perm University. Geology, 19(3), 232-240, (In Russian).
Cassie, D. (2006). The thermal regime of rivers: a review. Freshw. Biol., 51, 1389-1406.
CCME (Canadian Council of Ministers of the Environment). For the protection of aquatic life. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg. MB. Canada. 2007.
Chu, C., Minns C.K., and Mandrak N.E. Comparative regional assessment of factors impacting freshwater fish biodiversity in Canada. Can. J. Fish. Aquat. 60(5): 624-634. 
Dixit, A., Siddaiah, N. S., Chauhan, J. S. and Khan, W. U. (2021). Water Quality Assessment in Urban Wetlands and Suitability for Fish Habitat: A Case Study. Pollution, 7(2), 457-467. 
Edet, A. E. and Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJ., 57, 295-304.
El Behairy, R. A., El Baroudy, A. A., Ibrahim, M. M., Kheir, A. and Shokr, M. S. (2021). Modelling and Assessment of Irrigation Water Quality Index Using GIS in Semi-arid Region for Sustainable Agriculture. Water Air Soil Pollut., 232, 352.
Faquim, R., Machado, K. B., Teresa, F. B., Oliveira, P., Granjeiro, G. F., Galli Vieira, L. C., and Nabout, J. C. (2021). Shortcuts for biomonitoring programs of stream ecosystems: Evaluating the taxonomic, numeric, and cross-taxa congruence in phytoplankton, periphyton, zooplankton, and fish assemblages. PloS one, 16(10), e0258342. 
Fu, C., Guo, J., Pan, J., Qi, J., & Zhou, W. (2009). Potential Ecological Risk Assessment of Heavy Metal Pollution in Sediments of the Yangtze River Within the Wanzhou Section, China. Biol Trace Elem Res., 129, 270-277.
Hamdhani, H., Eppehimer, D. E. and Bogan, M. T. (2020). Release of treated effluent into streams: A global review of ecological impacts with a consideration of its potential use for environmental flows. Freshw. Biol., 65, 1657-1670. 
Hawkins, C. P. and Carlisle D. M. (2022). Biological Assessments of Aquatic Ecosystems. Encyclopedia of Inland Waters (Second Edition), 2, 525-536.
Heikkinen, K., Saari, M., Heino, J., Ronkanen, A. K., Kortelainen, P., Joensuu, S., Vilmi, A.,
Karjalainen, S. M., Hellsten, S., Visuri, M. and Marttila, H. (2022). Iron in boreal river catchments: Biogeochemical, ecological and management implications. Sci. Total Environ., 805, 150256.
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M. and Naeem, S. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3-36.
Huang, X., Xu, J., Liu, B., Guan, X. and Li, J. (2022). Assessment of Aquatic Ecosystem Health with Indices of Biotic Integrity (IBIs) in the Ganjiang River System, China. Water, 14, 278. 
Gad, M., Abou El-Safa, M. M., Farouk, M., Hussein, H., Alnemari, A.M., Elsayed, S., Khalifa, M. M., Moghanm, F. S., Eid, E. M. and Saleh, A. H. (2021). Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake, Egypt. Water, 13, 2258. 
Gad, M., Saleh, A. H., Hussein, H., Farouk, M. and Elsayed, S. (2022). Appraisal of Surface Water Quality of Nile River Using Water Quality Indices, Spectral Signature and Multivariate Modeling. Water, 14, 1131 
Galib, S. M., Mohsin, A. B. M., Parvez, M. T., Lucas, M. C., Chaki, N., Arnob, S. S., Hossain, M. I. and Islam, M. N. (2018). Municipal wastewater can result in a dramatic decline in freshwater fishes: a lesson from a developing country Knowl. Manag. Aquat. Ecosyst., 419, 37.
Ghani, W. A., Kutty, W. M. H., Mahazar, A. A., Al-Shami, M. A. and Hamid, S. A. (2018). Performance of biotic indices in comparison to chemical-based Water Quality Index (WQI) in evaluating the water quality of urban river. Environ. Monit. Assess., 190:297. 
Gordeev, V. and Lisitzin, A. (2014). Geochemical interaction between the freshwater and marine hydrospheres. Russ. Geol. Geophys., 55(5-6), 562-581 (in Russian)
GOST 31957-2012 (2013). Water. Methods for Determination of Alkalinity and Mass Concentration of Carbonates and Hydrocarbonates. (Moscow, Standardtinform). (in Russian)
GOST 31861-2012 (2013). Water. General requirements for sampling. (Moscow, Standardtinform). (in Russian)
Gray, R., Jones, H. A., Hitchcock, J. N., Hardwick, L., Pepper, D., Lugg, A. and Mitrovic, S. M. (2019). Mitigation of cold-water thermal pollution downstream of a large dam with the use of a novel thermal curtain. River Res. Appl., 35, 855-866. 
Cuss, C.W., Glover, C.N., Javed, M.B., Nagel, A. and Shotyk, W. (2019). Geochemical and biological controls on the ecological relevance of total, dissolved, and colloidal forms of trace elements in large boreal rivers: review and case studies. Environmental Reviews. 28(2), 138-163. 
Ilmast N. V., and Sterligova O. P. (2020) Fish population of the Kenti River system water bodies affected by long-term industrial pollution, Western Karelia. Advances in Current Biology: 140 (4), 404-414 (in Russian)
Issa, H.M. and Alshatteri, A.H. (2021). Impacts of wastewater discharge from Kalar city on Diyala-Sirwan river water quality, Iraq: pollution evaluation, health risks of heavy metals contamination. Appl Water Sci., 11, 73.
Jeppesen, E., Meerhoff, M., Holmgren, K., González-Bergonzoni, I., Teixeira-de Mello, F., Declerck, S. A. J., De Meester, L., Søndergaard, M., Lauridsen, T. L., Bjerring, R., Conde-Porcuna, J-M., Mazzeo, N., Iglesias, C., Reizenstein, M., Malmquist, H. J., Liu, Z., Balayla, D., and Lazzaro, X. (2010). Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 646(1), 73-90. 
Jurajda, P., Streck, G., Roche, K., Janáč, M., and Jurajdová, Z. (2021). Impact of multiple stressors on the fish community pattern along a highly degraded Central European river - a case study. J. Vertebr. Biol., 70(1), 20066.
Karr, J., Fausch, K., Angermeier, P., Yant, P., and Ij, S. (1986). Assessing biological integrity in running waters A method and its rationale. Illinois Natural History Survey, 5.
Khayrulina, E., Mitrakova, N., Poroshina, N., Menshikova, E. and Perminova, A. (2022). Formation of Solonchak in the Area of the Discharged Ancient Brine Wells (Perm Krai, Russia). Front. Environ. Sci., 10:858742.
Koli, P. B., Kapadnis, K. H., Deshpande and U. G. (2018). Study of physico-chemical properties, detection and toxicity study of organic compounds from effluent of MIDC Thane and GIDC Ankleshwar industrial zone. Appl Water Sci., 8, 196.
Kopylov, I. (2012). Geochemical Regularities of Spatial Distribution of Chemical Elements on the Western Urals and Priurals. Bulletin of the Perm University. Geology, 2:15, 16-34. (In Russian)
Kreutzweiser, D., Beall, F., Webster, K., Thompson, D. and Creed, I. (2013). Impacts and prognosis of natural resource development on aquatic biodiversity in Canada’s boreal zone. Environmental Reviews. 21(4), 227-259. 
Li, X., Shen, H., Zhao, Y., Cao, W., Hu, C. and Sun, C. (2019). Distribution and Potential Ecological Risk of Heavy Metals in Water, Sediments, and Aquatic Macrophytes: A Case Study of the Junction of Four Rivers in Linyi City, China. IJERPH., 16(16), 2861.
Lepikhin, A., Voznyak, A., Lyubimova, T., Parshakova Ya., Lyakhin Yu. and Bogomolov S. (2020). Studying the Formation Features and the Extent of Diffuse Pollution Formed by Large Industrial Complexes: Case Study of the Solikamsk–Berezniki Industrial Hub. Water Resour., 47(5):744-750.
Lomartire, S., Marques, J. C. and Gonçalves, A. M. M. (2021). The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecol. Indic., 129, 107867.
Malik, D. S., Sharma, A. K., Sharma, A. K., Thakur, R. and Sharma, M. (2020). A review on impact of water pollution on freshwater fish species and their aquatic environment. Adv Environ Pollut Manag: Wastewater Impacts Treatment Technol., 1, 10-28.
Maskooni, E. K., Naseri-Rad, M., Berndtsson, R. and Nakagawa, K. (2020). Use of Heavy Metal Content and Modified Water Quality Index to Assess Groundwater Quality in a Semiarid Area. Water, 12,1115. 
McCabe, D. J. (2011) Rivers and Streams: Life in Flowing Water. Nature Education Knowledge, 3(10):19
Menshikova E. (2016). Trasformation of alluvial deposits of small rivers in wastewater distribution conditions. Geology and Mineral Resources of the Western Urals, 16. 66-69, (In Russian).
Michalec, B. and Cupak, A. (2022). Assessment of quality of water and sediments in small reservoirs in Southern Poland - A case study. Environ. Eng. Res., 27(2), 200660. 
Miroshnichenko, S. (2011). The sources of iron formation in surface waters of the Kama River within Perm Krai. Water Sector of Russia, 6, 69-82. (In Russian).
Moldovan, A., Török, A.I., Kovacs, E., Cadar, O., Mirea, I.C. and Micle, V. (2022). Metal Contents and Pollution Indices Assessment of Surface Water, Soil, and Sediment from the Aries, River Basin Mining Area, Romania. Sustain., 14, 8024. 
Murdoch, A., Mantyka-Pringle, C., Sharma, S., 2020. The interactive effects of climate change and land use on boreal stream fish communities. Sci. Total Environ. 700, 134518.
Nikel, K. E., McCallum, E. S., Mehdi, H., Du, S. N., Bowman, J. E., Midwood, J. D., ... and Balshine, S. (2021). Fish living near two wastewater treatment plants have unaltered thermal tolerance but show changes in organ and tissue traits. J. Great Lakes Res., 47(2), 522-533. 
Oberdorff, T. and Hughes, R. M. (1992). Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine Basin, France. Hydrobiologia 228, 117-130. 
Order of the Ministry of Agriculture of the Russian Federation of December 13, 2016 No. 552 “About approval of the water quality standards for water bodies of fisheries significance, including the standards for maximum permissible concentrations of harmful substances in the waters of water bodies of fisheries significance”, (In Russian).
Preisner, M. (2020). Surface Water Pollution by Untreated Municipal Wastewater Discharge Due to a Sewer Failure. Environ. Process., 7, 767-780.
Proshad, R., Zhang, D., Idris, A. M., Islam, M. S., Kormoker, T., Sarker, M., Khadka, S., Sayeed, A. and Islam, M. (2021). Comprehensive evaluation of chemical properties and toxic metals in the surface water of Louhajang River, Bangladesh. Environ. Sci. Pollut., 28(35), 49191-49205. 
R 52.24.353-2012, 2012. Surface water sampling of land and treated wastewater (Moscow, Goskomgidromet). (in Russian)
Rosen, M. A., Bulucea, C. A., Mastorakis, N. E., Bulucea, C. A., Jeles, A. C. and Brindusa, C. C. (2015). Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River. Sustain., 7, 5920-5943. 
SanPIN 1.2.3685-21 Hygienic standards and requirements to ensure safety and (or) harmlessness for humans of environmental factors (Moscow: CENTROMAG)
Schinegger, R., Trautwein, C. and Schmutz, S. (2013). Pressure-specific and multiple pressure response of fish assemblages in European running waters. Limnologica. 43(5):348-361. 
Schinegger, R., Palt, M., Segurado, P. and Schmutz, S. (2016). Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Sci Total Environ., 15(573), 1079-1088. 
Schweizer, M., Dieterich, A., Betz, S., Leim, D., Prozmann, V., Jacobs, B., ... and Triebskorn, R. (2022). Fish health in the Nidda as an indicator for ecosystem integrity: a case study for Central European small streams in densely populated areas. Environ Sci Eur., 34, 10. 
Semenchenko, V.P. and Razlutsky, V.I. (2010). Environ. Quality of Surface Water, Minsk: Belarus. Sci., p. 329.
Son, C. T., Giang, N. H., Thao, T. P., Nui, N. H., Lam, N. T. and Cong, V. T. (2020). Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. J. Water Supply: Res. Technol. – AQUA., 69(2), 160-172. 
Sutela, T., Vehanen, T. and Jounela, P. (2020). Longitudinal patterns of fish assemblages in European boreal streams. Hydrobiologia 847, 3277–3290. 
Sutela, T., Vehanen, T., Jounela, P. and Aroviita, J. (2021). Species-environment relationships of fish and map-based variables in small boreal streams: Linkages with climate change and bioassessment. Ecology and evolution, 11(15), 10457–10467.
Tchaikovsky, I., Mulygin, M., Korotchenkova, O., Chirkov, E. and Trapeznikov, D. (2018). Mineralogy of cuprous sandstones of the South Solikamsk Basin. Solikamsk depression. Problems of mineralogy and petrography. Problems of Mineralogy, Petrography, and Metallogeny. Scientific readings in memory of P.N. Chirvinsky: Collection of scientific articles / Perm State National Research University. Perm, 21, 85-98, (In Russian).
Tian, S., Wang, Z. and Shang, H. (2011). Study on the Self-purification of Juma River. Procedia Environ. Sci., 11, 1328-1333.
Ushakova, E. and Menshikova, E. (2021). Bottom sediments and their role in the formation of the environmental status of water bodies. Geology and Mineral Resources of the Western Urals, 41, 316-321, (In Russian).
Ushakova, E., Perevoshchikova, A. and Volkova M. (2020). Assessment of trace element content in bottom sediments of Berezniki urban district (Rerm Region). Geology and Mineral Resources of the Western Urals, 3(40). 243-251, (In Russian).
Vehanen, T., Sutela, T. and Korhonen, H. (2010). Environmental assessment of boreal rivers using fish data – a contribution to the Water Framework Directive. Fish. Manag. Ecol., 17, 165-175.  
Voutilainen, A., Huttula, T., Juntunen, J., Rahkola-Sorsa, M., Rasmus, K. and Viljanen, M. (2014). Diverging site-specific trends in the water temperature of a large boreal lake in winter and summer due to mixed effects of local features and climate change. Boreal Environ. Res., 19, 104-114.
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M. and Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrol Sci J., 54(1), 101-123. 
Wu, J., Mao, R., Li, M., Xia, J., Song, J., Cheng, D. and Sun, H. (2020). Assessment of aquatic ecological health based on determination of biological community variability of fish            and macroinvertebrates in the Weihe River Basin, China. J Environ Manage., 267.
Yang, J., Yan, D., Yang, Q., Gong, S., Shi, Z., Qiu, Q., Huang, S., Zhou, S. and Hu, M. (2021). Fish Species Composition, Distribution and Community Structure in the Fuhe River Basin, Jiangxi, China. Glob. Ecol. Conserv., 27, e01559. 
Yu, L., Zhang, F., Zang, K., He, L., Wan, F., Liu, H., Zhang, X. and Shi, Z. (2021). Potential Ecological Risk Assessment of Heavy Metals in Cultivated Land Based on Soil Geochemical Zoning: Yishui County, North China Case Study. Water, 13, 3322.