Heavy Metal Pollution Assessment in Lake Rinconada in the Southern Andes, Peru

Document Type : Original Research Paper


1 Escuela de Posgrado, Programa de Doctorado en Ciencia, Tecnología y Medio Ambiente, Universidad Nacional del Altiplano de Puno, 01 (054) 229864, Puno, Perú

2 Instituto de Investigación en Metalurgia, Materiales y Medio Ambiente, Universidad Nacional del Altiplano de Puno, (051) 352206, Puno, Perú

3 Centro de Investigación y Tecnología del Agua, Universidad de Ingeniería y Tecnología, (01) 2305020, Lima, Perú



The study was conducted in Lake Rinconada, a glacial lake affected by artisanal and small-scale gold mining activities in the southern Andes in Peru. The objectives of the study were to investigate the spatial distribution of heavy metals (As, Cu, Hg, Pb and Zn) in water and sediments and to assess the degree of metal pollution and ecological risk using the geoaccumulation and potential ecological risk indexes. The concentrations of As and Hg in sediments from Lake Rinconada exceeded the Canadian sediment quality regulations, whereas the concentrations of As, Hg and Pb in water and sediments from the mining-affected tributary, Lunar de Oro River exceeded the Peruvian and Canadian guidelines for water and sediments quality respectively. According to the geoaccumulation and potential ecological risk indexes, Lake Rinconada is extremely polluted by As and Hg, and the pollution is mostly concentrated in the northern part of the lake, where the mining-affected Lunar de Oro River flows into the lake. Concentrations of Pb are also high in the northern part of the lake, suggesting that the nearby gold mining town is a source of pollution. The results of this study allows to report that Lake Rinconada is completely deteriorated.


Acosta, J., Rivera, R., Valencia, M., Chirif, H., Huanacuni, D., Rodriguez, I., Villarreal, E., Paico, D. and Santisteban, A. (2009, June). Memoria mapa metalogenético del Perú, Ingemmet. Retrieved October 31, 2022, from https://docplayer.es/47269331-Memoria-mapa-metalogenetico-del-peru-2009.html.
Kretsinger, R. H., Uversky, V. N. and Permyakov, E. A. (Eds.) (2013). Arsenic toxicity. (New York: Springer). 
Ahamad, M. I., Song, J., Sun, H., Wang, X., Mehmood, M. S., Sajid, M., Su, P. and Khan, A. J. (2020). Contamination level , ecological risk , and source identification of heavy metals in the hyporheic zone of the weihe river , China. Environ. Res. Public Health, 17(1070), 1-17. 
ANA (2011, march). Impactos del cambio climático y procesos geodinámicos en glaciares tropicales. Retrieved October 31, 2022, from https://hdl.handle.net/20.500.12543/2093. 
ANA (2014). Inventario de glaciares y lagunas. Retrieved October 31, 2022, from https://hdl.handle.net/20.500.12543/199.
ANA (2016, march). Protocolo nacional para el monitoreo de la calidad de los recursos hídricos superficiales. Retrieved October 31, 2022, from https://www.ana.gob.pe/sites/default/files/publication/files/protocolo_nacional_para_el_monitoreo_de_la_calidad_de_los_recursos_hidricos_superficiales.pdf.
Antenor, C. V., Guido, S. A., José, C. P. and S., E. G. (1996, july). Geología de los cuadrangulos de Putina y la Rinconada. Retrieved October 31, 2022, from https://hdl.handle.net/20.500.12544/188.
Arroyo, E. (2014). Effects of the Climatic Anomalies in the Coverage of Snow of the Central Glaciers of Perú, University of Continental.
Bhattacharjee, S., Ghosh, S. K. and Chen, J. (2019). Semantic Kriging for Spatio-temporal Prediction. (Singapore: Springer). 
Brousett-Minaya, M. A., Rondan-Sanabria, G. G., Chirinos-Marroquín, M. and Biamont-Rojas, I. (2021). Impact of mining on surface waters of the region puno-Perú. Fides Et Ratio 21, 187–207.
CCME (1998, april). Sediment quality guidelines for the protection of aquatic Life. Retrieved October 31, 2022, from https://ccme.ca/en/current-activities/canadian-environmental-quality-guidelines
Cuentas, M. and Velarde, J. (2017). Uso de mercurio en la rinconada - Puno. Revista de Medio Ambiente Minero y Mineria, 4(1), 27–34.
Custodio, M., Cuadrado, W., Peñaloza, R., Montalvo, R., Ochoa, S. and Quispe, J. (2020). Human risk from exposure to heavy metals and arsenic in water from rivers with mining influence in the central andes of Peru. Water, 12(7), 20. 
Custodio, M., Huaraca, F., Espinoza, C. and Cuadrado, W. (2019). Distribution and accumulation of heavy metals in surface sediment of lake junin national reserve, Peru. Open Journal of Marine Science, 9(1), 33–48. 
Dai, L., Wang, L., Li, L., Liang, T., Zhang, Y., Ma, C. and Xing, B. (2018). Multivariate geostatistical analysis and source identification of heavy metals in the sediment of poyang lake in China. Sci. Total Environ., 621, 1433–1444. 
Cornejo, D. and Pacheco, M. (2014). Contaminación de aguas y sedimentos por As, Pb y Hg de la cuenca del rio ramis, puno - Peru. Revista de Investig. Escuela de Posgrado, 5(4), 33 - 46. 
Drenkhan, F., Huggel, C., Guardamino, L. and Haeberli, W. (2019). Managing risks and future options from new lakes in the deglaciating andes of Peru: The example of the Vilcanota-Urubamba basin. Sci. Total Environ., 665, 465–483. 
Drozdova, J., Raclavska, H., Raclavsky, K. and Skrobankova, H. (2019). Heavy metals in domestic wastewater with respect to urban population in ostrava, Czech Republic. Water and Environment Journal, 33(1), 77–85. 
Eghbal, N., Nasrabadi, T., Karbassi, A. R. and Taghavi, L. (2019). Investigating the pattern of soil metallic pollution in urban areas (case study: a district in tehran city). International J. Environ. Sci. Technol, 16(11), 6717–6726. 
Ehrbar, D., Schmocker, L., Vetsch, D. F. and Boes, R. M. (2018). Hydropower potential in the periglacial environment of Switzerland under climate change. Sustainability, 10(8), 1–14. 
EPA. (1996). Method 3050B Acid digestion of sediments, sludges, and soils 1.0 scope and aplication.
EPA. (2007). EPA Method 7471B (SW-846): Mercury in Solid or Semisolid Wastes (Manual Cold-Vapor Technique).
EPA. (2014). Method 6020B Inductively Coupled Plasma - Mass Spectrometry.
Fazeli, G., Karbassi, A., Khoramnejadian, S. and Nasrabadi, T. (2019). Evaluation of urban soil pollution: a combined approach of toxic metals and polycyclic aromatic hydrocarbons (PAHs). Int. J. Environ. Res., 13(5), 801–811. 
Fidel, L. and Rodriguez, R. (2008, october). Evaluación geológico e ingeniero - geológico de tres presas de sedimentación cuenca alta del río ramis - ananea, Puno. Retrieved October 31, 2022, from https://hdl.handle.net/20.500.12544/2185.
Forstner, U., & Muller, G. (1974). Schwermetalle in Flussen und seen. (Berlín: Springer).
Fuentes-Gandara, F., Pinedo-Hernández, J., Gutiérrez, E., Marrugo-Negrete, J. and Díez, S. (2021). Heavy metal pollution and toxicity assessment in mallorquin swamp: a natural protected heritage in the caribbean sea, Colombia. Mar. Pollut. Bull., 167. 1-8. 
Gammons, C. H., Slotton, D. G., Gerbrandt, B., Weight, W., Young, C. A., McNearny, R. L., Cámac, E., Calderón, R. and Tapia, H. (2006). Mercury concentrations of fish, river water, and sediment in the río ramis-lake titicaca watershed, Peru. Sci. Total Environ., 368(2–3), 637–648. 
GRP (2015). Informe final del área de geología región Puno. Retrieved October 31, 2022, from http://siar.minam.gob.pe/puno/documentos/informe-final-area-geologia-region-puno
Goyzueta, G. and Trigos, C. (2009). Riesgos de la salud pública en el centro poblado minero artesanal la rinconada (5200 msnm) en puno, Perú. Rev. Peru. Med. Exp. Salud Publica, 26(1), 41–44. 
Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res., 14(8), 975–1001. 
Herail, G., Fornari, M. and Rouhier, M. (1989). Geomorphological control of gold distribution and gold particle evolution in glacial and fluvioglacial placers of the ancocala-ananea basin - southeastern andes of Peru. Geomorphology, 2, 369–383.
INGEMMET. (1980). Informe Tecnico “Proyecto Oro”. [Electronic version]. Repositorio Ingemmet. 
ISAT. (2002, 1 march). Niveles de exposición ambiental, ocupacional y estado de salud de los niños de la comunidad minera artesanal de oro la rinconada. Retrieved October 31, 2022, from http://www.ilo.int/ipec/Informationresources/WCMS_IPEC_PUB_6549/lang--es/index.htm.
Karbassi, A. R., Nasrabadi, T. and Modabberi, S. (2014). Pollution with metals ( As , Sb , Hg , Zn ) in agricultural soil located close to zarshuran gold mine, Iran. Environ. Eng. Manag. J ., 13(1), 115-120.
Karlovi, I., Markovi, T. and Vujnovic, T. (2022). Groundwater recharge assessment using multi component analysis : case study at the NW edge of the varaždin alluvial. Water, 12(42), 14. 
Kayembe, J. M., Sivalingam, P., Salgado, C. D., Maliani, J., Ngelinkoto, P., Otamonga, J. P., Mulaji, C. K., Mubedi, J. I. and Poté, J. (2018). Assessment of water quality and time accumulation of heavy metals in the sediments of tropical urban rivers: case of bumbu river and kokolo canal, kinshasa city, democratic republic of the Congo. J. African Earth Sci., 147, 536–543. 
Konhauser, K. O., Powell, M. A., Fyfe, W. S., Longstaffe, F. J. and Tripathy, S. (1997). Trace element geochemistry of river sediment, orissa State, India. J. Hydrol., 193(1–4), 258–269. 
Lintern, A., Leahy, P. J., Heijnis, H., Zawadzki, A., Gadd, P., Jacobsen, G., Deletic, A. and Mccarthy, D. T. (2016). Identifying heavy metal levels in historical flood water deposits using sediment cores. Water Res., 105, 34–46. 
Loiza choque, E. and Galloso Carrasco, A. (2008). Implicancias Ambientales por la Actividad Minera de la Zona de Ananea en la Cuenca del Río Ramis. Retrieved October 31, 2022, from https://hdl.handle.net/20.500.12544/352.
Loza, A. L. and Ccancapa, Y. (2019). Mercury in a high altitude andes stream with strong impact by artisanal auriffer mining (la rinconada, puno, Peru). Rev. Int. de Contam. Ambient., 36(1), 33–44. 
Mallet, R. T., Burtscher, J., Richalet, J., Millet, G. P. and Burtscher, M. (2021). Impact of high altitude on cardiovascular health : current perspectives. Vasc. Health Risk Manag., 17, 317–335. 
Mendoza, E. O., Custodio, M., Ascensión, J. and Bastos, M. C. (2020). Heavy metals in soils from high andean zones and potential ecological risk assessment in Peru’s central andes. J. Ecol. Eng., 21(8), 108–119. 
ECA (2017). Estandar de calidad ambiental para agua. Retrieved October 31, 2022, from http://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf.
Narayan, A., Mora, A., Sánchez, L. and Rosales, J. (2020). Temporal and spatial variability of heavy metals in bottom sediments and the aquatic macrophyte paspalum repens of the orinoco river floodplain lagoons impacted by industrial activities. Environ. Sci. Pollut. Res., 27(29), 37074–37086. 
Nasrabadi, T., Nabi Bidhendi, G., Karbassi, A. and Mehrdadi, N. (2010). Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of haraz river sediments, southern Caspian Sea basin. Environ. Monit. Assess., 171(1–4), 395–410. 
Okonkwo, S. I., Idakwo, S. O. and Ameh, E. G. (2021). Heavy metal contamination and ecological risk assessment of soils around the pegmatite mining sites at olode area, ibadan southwestern Nigeria. Environ. Nanotechnol. Monit. Manag., 15, 1-15. 
Pejman, A., Nabi, G. and Ardestani, M. (2015). A new index for assessing heavy metals contamination in sediments : a case study. Ecol. Indic., 58, 365–373. 
Quispe-Zuniga, M. R., Santos, F., Callo-Concha, D. and Greve, K. (2019). Impact of heavy metals on community farming activities in the central peruvian andes. Minerals, 9(10), 14–17.
Rahim, M., Aproi, A., Shi, X., Liu, S., Ali, M. M., Yaacob, W. and Mohamed, C. (2019). Distribution of chromium and gallium in the total suspended solid and surface sediments of sungai kelantan, kelantan, Malaysia. Sains Malays., 48(11), 2343–2353. 
Ramos, V. A. (2008). The basement of the central andes: the arequipa and related terranes. Annu. Rev. Earth Planet. Sci., 36, 289–324. 
Regal, A. (1995, july). Las Minas Incaicas. [Electronic version]. Repositorio Pucp. 
Salas-Ávila, D., Chaiña-Chura, F. F., Belizario-Quispe, G., Quispe-Mamani, E., Huanqui-Pérez, R., Velarde-Coaquira, E., Bernedo Colca, F., Salas-Mercado, D. and Hermoza-Gutiérrez, M. (2021). Evaluation of heavy metals and social behavior associated a the water quality in the suches river, puno-Peru. Tecnol. Cienc. Agua, 12(6), 145–195. 
Salas-Mercado, D., Hermoza-Gutierrez, M., Belizario-Quispe, G., Chaiña, F., Quispe, E. and Salas-Ávila, D. (2022). Geochemical indices for the assessment of chemical contamination elements in sediments of the suches river , Peru. Pollution, 8(2), 595–610. 
Santos-Frances, F., Martinez-Grana, A., Alonso Rojo, P. and Garcia Sanchez, A. (2017). Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the andes mountain range (cajamarca-huancavelica, Peru). Int. J. Environ. Res. Public Health, 14(8), 22. 
Schoolmeester, T., Johansen, K. S., Alfthan, B., Baker, E., Hesping, M. and Verbist, K. (2018). Atlas de glaciares y aguas Andinos el impacto del retroceso de los glaciares sobre los recursos hídricos. Retrieved October 31, 2022, from https://app.ingemmet.gob.pe/biblioteca/pdf/Lib-107.pdf.
Tan, İ. and Aslan, E. (2020). Metal pollution status and ecological risk assessment in marine sediments of the inner izmit bay. Reg. Stud. Mar. Sci., 33, 1–10. 
Tapia, J., Murray, J., Ormachea, M., Tirado, N. and Nordstrom, D. K. (2019). Origin, distribution, and geochemistry of arsenic in the altiplano-puna plateau of Argentina, Bolivia, Chile, and Peru. Sci. Total Environ., 678, 309–325. 
Tendaupenyu, P., Matawa, F. and Magadza, C. (2018). Spatial distribution of surface sediment nutrients of a subtropical hypereutrophic lake: lake chivero, Zimbabwe. Environ. Nanotechnol., Monit. Manag., 10, 399–408. 
Toledo Orozco, Z. and Veiga, M. (2018). Locals’ attitudes toward artisanal and large-scale mining—a case study of tambogrande, Peru. Extr. Ind. Soc., 5(2), 327–334. 
Turekian, K. and Wedepohl, K. (1961). Distribution of the elements in some major units of the earth´s crust. Geol. Soc. Am. Bull., 72, 175–192. 
Veiga, M. M. (1997, 1 july). Mercury in artisanal gold mining in latin america: facts, fantasies and solutions. Retrieved October 31, 2022, from http://artisanalmining.org/Repository/01/The_CASM_Files/CASM_Projects/Topic_Mercury/veiga_02.pdf .
Wade, L. (2013). Gold ’ s Dark Side. Scince, 341(6153), 1448–1449.
Wang, L. F., Yang, L. Y., Kong, L. H., Li, S., Zhu, J. R. and Wang, Y. Q. (2014). Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of nansi lake, China. J. Geochem. Explor., 140, 87–95. 
Weekley, D. and Li, X. (2019). Tracking multidecadal lake water dynamics with landsat imagery and topography/bathymetry. Water Resour. Res., 55(11), 8350–8367. 
Wieland, P. (2020). Hernando de soto , the lone prospector and the formalization of artisanal and small-scale mining : a case study from la rinconada , Peru. Retrieved October 31, 2022, from https://environs.law.ucdavis.edu/volumes/43/1/articles/wieland.pdf.
Willer, H. and Takahashi, B. (Eds.) (2018). News media coverage of environmental challenges in latin america and the caribbean. (New York: Palgrave macmillan).
Wilson, R., Glasser, N. F., Reynolds, J. M., Harrison, S., Anacona, P. I., Schaefer, M. and Shannon, S. (2018). Glacial lakes of the central and patagonian andes. Glob. Planet. Change, 162, 275–291. 
Wu, T. and Li, Y. (2013). Spatial interpolation of temperature in the United States using residual kriging. App. Geogr., 44, 112–120. 
Yang, H. J., Jeong, H. J., Bong, K. M., Jin, D. R., Kang, T. W., Ryu, H. S., Han, J. H., Yang, W. J., Jung, H., Hwang, S. H. and Na, E. H. (2020). Organic matter and heavy metal in river sediments of southwestern coastal Korea: Spatial distributions, pollution, and ecological risk assessment. Mar. Pollut. Bull., 159, 1-11. 
Zuzolo, D., Cicchella, D., Catani, V., Giaccio, L., Guagliardi, I., Esposito, L. and De Vivo, B. (2017). Assessment of potentially harmful elements pollution in the calore river basin (southern Italy). Environ. Geochem. Health, 39(3), 531–548.