Assessing the Natural and Anthropogenic Radionuclide Activities in Fish from Arctic Rivers (Northwestern Russia)

Document Type : Original Research Paper

Authors

N. Laverov Federal Centre for Integrated Arctic Research of Ural Branch of the Russian Academy of Sciences, (FECIAR UrB RAS) 109 Severnoj Dviny Emb., Arkhangelsk 163000, Russia

Abstract

This scientific article presents the results of studies on the distribution of natural and artificial radionuclides in fish living in the rivers of the northwestern sector of the Arctic zone of the Russian Federation. Fish sampling (about 76 kg in total) was carried out in the White Sea, in the Northern Dvina and Mezen Rivers, and in the Sukhoe Sea Bay of the Arkhangelsk Region, as well as in the rivers of the Nenets Autonomous District: Pesha, Oma, Vizhas, Nes, and Pechora. The results showed the presence of artificial radionuclides Cs-137 and Sr-90 in fish only in the Nes River of the Nenets Autonomous District. The levels of radionuclides in whole bodies perch and pike in the Nes River range from 3.73 to 14.0 Bq/kg wet weight for Cs-137 and less than 3.72 to 23.1 Bq/kg wet weight for Sr-90. In addition to Cs-137 and Sr-90, the presence of the radionuclide K-40, which is the main dose-forming radionuclide, was noted in the fish of all the studied rivers and seas. K-40 activity was in the reached values 138 Bq/kg for whole fish bodies. The only assumption that can explain the presence of artificial radionuclides in the fish of the Nes River is a possible radioactive trace formed as a result of global nuclear tests, including in the Novaya Zemlya archipelago. At the same time, it is noted that the current levels of technogenic radioactivity in fish from the Nes River do not pose a radiological hazard to the local population.

Keywords

Main Subjects


Abdullah, A., Hamzah, Z., Saat, A., Wood, A. K. & Alias, M. (2015). Accumulation of radionuclides in selected marine biota from Manjung coastal area. AIP Conf. Proc., 1659; 050009.
Adel, M., Copat, C., Saeidi, M. R., Conti, G. O., Babazadeh, M. & Ferrante, M. (2018). Bioaccumulation of trace metals in b&ed Persian bamboo shark (Chiloscyllium arabicum) from the Persian Gulf: a food safety issue. Food Chem. Toxicol., 113; 198-203.
Adeleye, M. O., Oyebanjo, O., Gbenu, S. T. & Alayande, S. O. (2020). Activity concentration of natural radionuclides & assessment of the associated radiological hazards in the marine croaker (pseudotolitus typus) fish from two coastal areas of Nigeria. Sci. World J., 15(2). 
Age-dependent doses to the Members of the public from intake of radionuclides – Part 5 compilation of ingestion & inhalation coefficients. ICRP Publication 72. Ann. ICRP 1996, 26(1); 1-91. 
Ajayi, O. S., Fatile, E. O. & Dike, C. G. (2018). Radiological toxicity of some fish & meat tissues consumed in southwestern Nigeria. Hum. Ecol. Risk Assess., 24; 1151–1159.
Alimova, G. S. & Utkina, I. N. (2016). Contents Cs-137, & K-40 in bottom sediments & in fishes of r. Irtysh & r. Tobol. Inter. J. Appl. Fund. Res., 9; 101-104. (in Russ.)
Ananieva, T. & Shapovalenko, Z. (2019). The contents of artificial & natural radionuclides in tissues of the Percidae fish from the Dnipro Reservoir. Ukr. J. Ecology, 9(3); 304-308.
Bazhenov, A. V., Iglovsky, S. A. & Yakovlev, E. Yu. (2022). Technogenic radioactivity of soils in the area of the Morzhovsky lighthouse (Morzhovets Island, Arkhangelsk Region). Soils & environment, 5(4); e193. (in Russ.)
Bezhenar, R., Kim, K. O., Maderich, V., de With, G. & Jung, K. T. (2021). Multi-compartment kinetic-allometric model of radionuclide bioaccumulation in marine fish. Biogeosciences, 18; 2591–2607. 
Burger, A. & Lichtscheidl, I. (2019). Strontium in the environment: review about reactions of plants towards stable & radioactive strontium isotopes. Sci. Total Environ., 653; 1458–1512.
Burger, J., Gaines, K. F., Peles, J. D., Stephens Jr., W. L., Shane Boring, C., Brisbin Jr., I. L., Snodgrass, J., Bryan Jr., A. L., Smith, M. H. & Gochfeld, M. (2001). Radiocesium in fish from the Savannah River & Steel Creek: potential food chain exposure to the public. Risk Analysis, 21(3); 545-559. 
Canu, I. G., Jacob, S., Cardis, E., Wild, P., Ca¨er, S., Auriol, B., Garsi, J. P., Tirmarche, M. & Laurier, D. (2011). Uranium carcinogenicity in humans might depend on the physical & chemical nature of uranium & its isotopic composition: results from pilot epidemiological study of French nuclear workers. Canc. Cause Contr., 22; 1563–1573. 
Carvalho, F. P., Oliveira, J. M. & Malta, M. (2011). Radionuclides in deep-sea fish & other organisms from the north Atlantic Ocean. ICES J. Mar. Sci., 68(2); 333–340. 
Chen, J., Rennie, M. D., Sadi, B., Zhang, W. & St-Amant, N. (2016). A study on the levels of radioactivity in fish samples from the experimental lakes area in Ontario, Canada. Environ. Radioact., 153; 222-230.
Compendium of dose coefficients based on ICRP publication 60. ICRP publication 119. Ann. ICRP 2012, 41 (Suppl. l); 1-132. 
Coughtrey, P. J. & Thorne, M. C. (1983). Radionuclide distribution & transport in terrestrial & aquatic ecosystems: A critical review of data. vol 2. (Rotterdam).
Dowdall, M., Gwynn, J. P., Moran, C., O’Dea, J., Davids, C. & Lind, B. (2005). Uptake of radionuclides by vegetation at a High Arctic location. Environ. Pollut., 133; 327–332.
 Fakhri, Y., Sarafraz, M., Pilevar, Z., Daraei, H., Rahimizadeh, A., Kazemi, S., Khedher, K. M., Thai, V. N., Ba, L. H. & Khaneghah, A. M. (2022). The concentration & health risk assessment of radionuclides in the muscle of tuna fish: A worldwide systematic review & meta-analysis. Chemosphere, 289; 133149. 
Fasae, K. P. & Isinkaye, M. O. (2018). Radiological risks assessment of 238U, 232Th & 40K in fish feeds & catfish samples from selected fish farms in Ado-Ekiti, Nigeria. J. Radiat. Res. Appl. Sci., 11; 317-322.
Firouzabadi, M., Jahromi, H. J. & Ardakani, H. A. (2020). Measurement of Strontium-90 in the Persian Gulf Fish by Extraction Chromatography with Sr-resin & Liquid Scintillation Counter. Iran South Med. J., 23(6); 541-553.
Fisheries Agency of Japan (2014). Report on the Monitoring of Radionuclides in Fishery Products (March 2011 – March 2014). (Tokyo: Fisheries Agency of Japan). 
Fresquez, P. R., Kraig, D. H., Mullen, M. A. & Naranjo, L. Jr. (1999). Radionuclides & trace elements in fish collected upstream & downstream of Los Alamos national laboratory & the doses to humans from the consumption of muscle & bone. J. Environ. Sci. Health – B Pestic. Food Contam. Agric. Wastes, 34(5); 885-899.
Friedlander, B. R., Gochfeld, M., Burger, J. & Powers, C. W. (2005). Radionuclides in the marine environment: a CRESP science review. In Book Amchitka Independent Science Assessment: Biological & Geophysical Aspects of Potential Radionuclide Exposure in the Amchitka Marine Environment. Consortium for Risk Evaluation with Stakeholder Participation; Powers, C.W., Burger, J., Kosson, D., Gochfeld, M., Barnes, D., Eds. (New Jersey: Piscataway).
Garnier-Laplace, J., Gilek, M., Sundell-Bergman, S. & Larsson, C. -M. (2004). Assessing ecological effects of radionuclides: data gaps & extrapolation issues. J. Radiol. Prot., 24(4A); 139-155.
Giri, S., Singh, G., Jha, V. N. & Tripathi, R. M. (2010). Natural radionuclides in fish species from surface water of Bagjata & Banduhurang uranium mining areas, East Singhbhum, Jharkh&, India. Int. J. Radiat. Biol., 86(11); 946–956. 
Gorür, K. F., Keser, R., Akcay, N. & Dizman, S. (2012). Radioactivity & heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere, 87; 356-361.
Gwynn, J. P., Dowdall, M., Davids, C., Selnæs, Ø. G. & Lind, B. (2004). The radiological environment of Svalbard. Polar Res., 23(2); 167–180.
Heldal, H. E., Volynkin, A., Komperod, M., Hannisdal, R., Skjerdal, H. & Rudiord, A. L. (2019). Natural & anthropogenic radionuclides in Norwegian farmed Atlantic salmon (Salmo salar). J. Environ. Radioact., 205-206; 42-47. 
Hubanova, N., Horchanok, A., Novitskii, R., Sapronova, V., Kuzmenko, O., Grynevych, N., Prisjazhnjuk, N., Lieshchova, M., Slobodeniuk, O. & Demyanyuk, O. (2019). Accumulation of radionuclides in Dnipro reservoir fish. Ukrainian J. Ecol., 9(2); 227-231.
IAEA (1999). Radiological assessment of coastal marine sediment & water samples, Karachi Coast, Pakistan. IAEA-Research Contract PAK8127- Radiation & Isotope Application Division. (Pakistan: Pakistan Institute of Nuclear Science & Technology). 
Il’in, G. V., Kasatkina, N. E., Moiseev, D. V. & Usyagina, I. S. (2017). Infrastructure Objects of the Nuclear Fleet as Sources of Radioactive Contamination of the Barents Sea: Waste Repository in Guba Andreeva. Atomic Energy, 122(2); 131-137.
Jensson, H., Strand, P., Tsaturov, Y. & Reiersen, L. (2004). AMAP Asssessment 2002: Radioactivity in the Arctic. (Oslo: AMAP).
Kaglyan, A. Ye., Gudkov, D. I., Klenus, V. G., Yurchuk, L. P., Nazarov, A. B., Pomortseva, N. A., Shirokaya, Z. O. & Shevtsova, N. L. (2016). Radionuclides in fish of the Chernobyl exclusion zone: species-specificity, seasonality, size- & age-dependent features of accumulation. Rad. Applic., 1(2); 110-113.
Kiselev, G. P., Kiseleva, I. M., Druzhinin, S. V. & Bazhenov, A. V. (2018). The radioactivity of bottom sediments of the delta of the Northern Dvina River. (Moscow, Institute of Oceanology). (in Russ.)
Korkmaz, G. F., Keser, R., Akcay, N. & Dizman, S. (2012). Radioactivity & heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere, 87; 356–361. 
Krey, P. W. & Krajewsky, B. (1970). Comparison of atmospheric transport model calculations with observations of radioactive debris. J. Geophys. Res., 75; 2901–2908.
Kryshev, A. I., Sazykina, T. G., Katkova, M. N., Buryakova, A. A. & Kryshev, I. I. (2022). Modelling the radioactive contamination of commercial fish species in the Barents Sea following a hypothetical short-term release to the Stepovogo Bay of Novaya Zemlya. J. Environ. Radioact., 244-245.
Lee, S., Oh, J., Lee, K., Lee, J., Hwang, S., Lee, M., Kwon, E., Kim, C., Choi, I. & Yeo, I. (2018). Evaluation of abundance of artificial radionuclides in food products in South Korea & sources. J. Environ. Radioact., 184; 46–52.
Livingston, H. D. & Povinec, P. P. (2002). A Millennium Perspective on the Contribution of Global Fallout Radionuclides to Ocean Science. Health Phys., 82; 656-668. 
Łokas, E., Mietelski, J. W., Ketterer, M. E., Kleszcz, K., Wachniew, P., Michalska, S. & Miecznik, M. (2013). Sources & vertical distribution of 137Cs, 238Pu, 239+240Pu & 241Am in peat profiles from southwestern Spitsbergen. Appl. Geochem., 28; 100–108. 
Matishov, G. G., Matishov, D. G., Usyagina, I. S. & Kasatkina, N. E. (2014). Long-term dynamics of radioactive contamination in the Barents-Kara region (1960-2013). Dokl. Earth Sci., 458(4); 473–479.
Miki, S., Fujimoto, K., Shigenobu, Y., Ambe, D., Kaeriyama, H., Takagi, K., Ono, T., Watanabe, T., Sugisaki, H. & Morita, T. (2017). Concentrations of 90Sr & 137Cs/90Sr activity ratios in marine fishes after the Fukushima Dai-ichi Nuclear Power Plant accident. Fish. Oceanogr., 26(2); 221-233.
Milenkovic, B., Stajic, J.M., Stojic, N., Pucarevic, M. & Strbac, S. (2019). Evaluation of heavy metals & radionuclides in fish & seafood products. Chemosphere, 229; 324-331.
Mirochnikov, Yu., Laverov, N. P.; Chernov, R. A., Kudikov, A. V., Ysacheva, A. A., Semenkov, I. N., Aliev, R. A., Asadulin, E. E. & Gavrilo, M. V. (2017). Radioecological Research on the North Novaya Zemlya Archipelago. Oceanology, 57(1); 227-237. (in Russ.).
Muratov, O. E., Tichonov, M. N. & Rylov, M. I. (2014). Nuclear-radiation legacy in the north-west of Russia: ensuring nuclear & radiation safety, role of the public. Radiat. Saf.; 34-45. (in Russ.)
Ohtsuka, Y., Kakiuchi, H., Akata, N., Takaku, Y. & Hisamatsu, S. (2013). Daily Radionuclide Ingestion & Internal Radiation Doses in Aomori Prefecture, Japan. Health Physics., 105(4); 340-350. 
Orosun, M. M., Adisa, A. A., Akinyose, F. C., Amaechi, E. C., Ige, O. S., Ibrahim, B. M., Martins, G., Adebanjo, G. D., Oduh, O. V. & Ademola, O. J. (2018). Measurement of Natural Radionuclides Concentration & Radiological Impact Assessment of Fish Samples from Dadin Kowa Dam, Gombe State Nigeria. African J. Med. Phys., 1(1); 25-35.
Pătraşcu, V., Mărgineanu, R. M., Maximov, V., Blebea-Apostu, A. -M., Galaţchi, M., Gomoiu, C. & Ţiganov, G. (2017). Radioactive Content in Fish from Black Sea Caches. Its Impact on Population by Food Consumption. In Book Diversity in Coastal Marine Sciences. (Switzerland: Springer Cham).
Pearson, A. J., Gaw, S., Hermanspahn, N. & Glover, C. N. (2016). Activity concentrations of 137Caesium & 210Polonium in seafood from fishing regions of New Zealand & the dose assessment for seafood consumers. J. Environ. Radioact., 151; 542–550. 
Pinder, J. E., Hinton, T. G., Taylor, B. E. & Whicker, F. W. (2011). Cesium accumulation by aquatic organisms at different trophic levels following an experimental release into a small reservoir. J. Environ. Radioact., 102; 283–293. 
Povinec, P. P. & Hirose, K. (2015). Fukushima radionuclides in the NW Pacific, & assessment of doses for Japanese & world population from ingestion of seafood. Sci. Rep., 5; 9016.
Puchkov, A. V. & Yakovlev, E. Yu. (2023). Features of accumulation & migration of technogenic radionuclides 137Cs & 90Sr in the tundra landscapes of the Russian Arctic (on the example of the Nes river basin, Kaninskaya tundra). Bull. Geosci. Accepted for publication. (in Russ.)
Rask, M., Saxén, R., Ruuhijärvi, J., Arvola, L., Järvinen, M., Koskelainen, U., Outola, I. & Vuorinen, P. J. (2012). Short- & long-term patterns of 137Cs in fish & other aquatic organisms of small forest lakes in southern Finl& since the Chernobyl accident. J. Environ. Radioact., 103; 41–47.
Ries, T., Putyrskaya, V. & Klemt, E. (2019). Long-term distribution & migration of 137Cs in a small lake ecosystem with organic-rich catchment: a case study of Lake Vorsee (Southern Germany). J. Environ. Radioact., 198; 89–103.
Ryabov, I. N. (2002). Long-term observation of radioactivity contamination in fish around Chernobyl. In Book Recent Research Activities about the Chernobyl NPP Accidentin Belarus, Ukraine & Russia. (Tokyo: Kyoto University). 
Ryabov, I. N., Belova, N. V. & Polyakova, N.I. (1998). Evolution of radiocaesium contamination in fishes after the Chernobyl accident. Ital. J. Anim. Sci., 65(1); 455-460.
Saat, A., Isak, N. M., Hamzah, Z. & Wood, A. K. (2014). Study of Radionuclides Linkages Between Fish, Water & Sediment In Former Tin Mining Lake In Kampung Gajah, Perak, Malaysia. Malaysian J. Anal. Sci., 18(1); 170–177.
SanPiN 2.3.2.1078-01 (2001). Hygienic Requirements for Food Safety & Nutritional Value of Food Products. State Sanitary Rules & Regulations. (Russia, Moscow: Publishing Department of the Federal Center for State Sanitary & Epidemiological Surveillance of the Ministry of Health of Russia). (in Russ.)
Smith, J. N., Ellis, K. M., Polyak, L., Ivanov, G., Forman, S. L. & Moran, S. B. (2000). 239,240Pu transport into the Arctic Ocean from underwater nuclear tests in Chernaya Bay, Novaya Zemlya. Cont. Shelf Res., 20(3); 255–279.
Strand, P., Howard, B. J., Aarkrog, A., Balonov, M., Tsaturov, Y., Bewers, J. M., Salo, A., Sickel, M., Bergman, R. & Rissanen, K. (2002). Radioactive contamination in the Arctic–sources, dose assessment & potential risks. J. Environ. Radioact., 60; 5–21. 
Suzuki, Y., Nakahara, M., Nakamura, R. & Ueda, T. (1979). Roles of Food & Sea Water in the Accumulation of Radionuclides by Marine Fish. Bull. Japan. Soc. Scient. Fsher., 45(11); 1409-1416.
Thomas, D. M., Lee, C.-S. & Fisher, N. S. (2018). Bioaccumulation & trophic transfer of 137Cs in marine & freshwater plankton. Chemosphere, 209; 599–607. 
Trapeznikov, A. V., Trapeznikova, V. N., Korzhavin, A. V., Nikolkin, V. N. & Plataev, А. P. (2019). Basic principles for assessing the safety of fish products from the ponds exposed to the influence of nuclear fuel cycle enterprises. Medicо-Biological & Socio-Psychological Problems of Safety in Emergency Situations, 1; 106–114. (in Russ.). 
UNEP/IAEA (1992). Assessment of the state of pollution of the Mediterranean Sea by radioactive substances. MAP Technical Report Series No. 62. (Athens: UNEP). 
UNSCEAR (2000). Sources & Effects of Ionizing Radiation. Report to the General Assembly with Annexes. (New York: United Nations). 
Wesley, S. G. & Khan, M. F. (2011). Radionuclides in south Indian seafoods: A special focus on major contributing species. Radioprotection, 46(6); 151–159. 
WHO (2011). The International Food Safety Authorities Network (INFOSAN), World Health Organization Food & Agriculture Organization progress report 2004– 2010. (Geneva: United Nations). 
Yakovlev, E., Druzhinina, A., Druzhinin, S., Zykov, S. & Ivanchenko, N. (2022). Assessment of physical & chemical properties, health risk of trace metals & quality indices of surface waters of the rivers & lakes of the Kola Peninsula (Murmansk Region, North-West Russia). Environ. Geochem. Health, 44(8); 2465-2494. 
Yakovlev, E. & Puchkov, A. (2020). Assessment of current natural & anthropogenic radionuclide activity concentrations in the bottom sediments from the Barents Sea. Mar. Pollut. Bull., 160; 11151. 
Yakovlev, E., Puchkov, A. & Bykov, V. (2021). Assessing the natural & anthropogenic radionuclide activities of the Pechora River estuary: Bottom sediments & water (Arctic Ocean Basin). Mar. Pollut. Bull., 172; 112765. 
Yankovich T. L. (2003). Towards an improved ability to estimate internal dose to non-human biota: development of conceptual models for reference non-human biota. Proceedings of third international symposium on the protection of the environment from ionising radiation, IAEA, Vienna, Austria; 365–373. 
Zotina, T., Trofimova, E. & Bolsunovsky, A. (2011). Artificial radionuclides in fish fauna of the Yenisei River in the vicinity of the Mining-&-Chemical Combine (Siberia, Russia). Radioprotection, 46(6); 75–78.
Zotina, T. A., Trofimova, E. A. & Dementyev, D. V. (2019). Time-dependent trends of artificial radionuclides in biota of the Yenisei River (Siberia, Russia). J. Environ. Radioact., 208-209; 106028.