Aeration, Alum, and Kaolin Ore for Nutrient and Heavy Metal Removal from Urban Wastewater for the Purpose of Reuse and Conservation

Document Type : Original Research Paper

Authors

1 Civil Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt

2 Chemistry Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt

Abstract

Domestic and industrial wastewater contributed to some urban wastewater, which requires specific processing before being disposed into surface waters or reused for irrigation. This paper aimed to employ kaolin as an adsorbent to remove heavy metals from wastewater, as well as aeration and alum to remove nutrients. Experiment were conducted in three parts: first, involved using the aeration method to determine the ideal amount of time to remove or minimize the nutrients. Second, involves treating the solution with potassium alum using various alum doses at the obvious times to eliminate or minimize the nutrients, while third step involves treating the solution with kaolin ore with a size of < 63 µm at various doses, pH, and contact times to remove heavy metals. The findings showed that the aeration method completely removed CO3, OH, PO4, NO3, Ca, and Mn ions after contact time equal 120, 24, 192, 24, 120, and 48 hrs, respectively. Applaying alum treatment method can remove completely CO3, OH, PO4, NO3, and Mn, after contact time 120, 24, 120, 24, and 24 hrs, respectively. When Kaolin ore used as adsorbent, the removal efficiency of  Fe, Cd, Cr, Cu, Sr, Mn, and Zn were; 92, 100, 100, 100, 94, 100, and 88 % ,respectively in 24 hours contact time. The experiment succeeds in treatment of industrial wastewater that was within the range of specified limitations for disposing into surface water or reuse in irrigation field as stated by Egyptian standard code using the three successive treatment techniques.

Keywords

Main Subjects


Abdelwahab, N. A., & Helaly, F. M. (2017). Simulated visible light photocatalytic degradation of  Congo red by TiO2 coated magnetic polyacrylamide grafted carboxym ethylated chitosan. Journal of Industrial & Engineering Chemistry, 50, 162–171
Ajmal, M.; Rifaqt, A.K., & Siddiqui, B.A. (1995). Adsorption studies & removal of dissolved metals using pyrolusite as adsorbent. Environ. Monit., & Ass., 38, 25-35.
Ajmal, M; Sulaiman, A.M., & Khan, A.H. (1992). Adsorption of heavy metals using iron hydroxide. J. water, air & soil pollution, 68, 485.
Alemu, G., Zewge, F., Chebude, Y., Tesfaye, M., & Mekonnen, A. (2022). Phosphate abatement using calcium silicate hydrate synthesized from alum factory solid waste residue. Separation Science & Technology, 57(11), 1669-1687. 
Alia, B. A., Saggai, S., Touil, Y., Al-Ansari, N., Kouadri, S., Nouasria, F. Z., ..., & Khedher, K.M. (2022). Copper & Zinc Removal from Wastewater Using Alum Sludge Recovered from Water Treatment Plant. Sustainability, 14(16), 9806.; https://doi.org/10.3390/su14169806.
Andreadakis, A.; Kondili, G.; Mamais, F., & Noussi, A. (1995). Treatment of septage using single & two stage activation sludge batch reactors systems, Wat.Sci.Tech.,32(12),63-75.
Anjali, G., & Sabumon, P. C. (2017). Development of simultaneous partial nitrification, anammox & denitrification (SNAD) in a non-aerated SBR. International Biodeterioration & Biodegradation, 119, 43-55. https://doi.org/10.1016/j.ibiod.2016.10.047.
Awwad, M., Salem, N. M., Amer, M. W., & Shammout, M. W. (2021). Adsorptive removal of Pb(II) & Cd(II) ions from aqueous solution onto modified Hiswa iron-kaolin clay: Equilibrium & thermodynamic aspects. Chemistry International 7(2), 139-144.
Biao, W., Yang, P., Jung, H., Zhu, M., Diaz, J. M., & Tang, Y. (2021). Iron oxides catalyze the hydrolysis of polyphosphate & precipitation of calcium phosphate minerals. Geochimica et Cosmochimica Acta, 305, 49-65. 
Bohn., McNeal, B., & Conner, G.O. (1985). Soil Chemistry, pp 341,Wiley &Sons, New York. 
Cheng, H., Liu, Q., Yang, J., Zhang, Q., & Frost, R.L. (2010). Thermal behavior & decomposition of kaolinite-potassium acetate intercalation composite. Thermochim. Acta., V. 503-504, pp. 16-20.
Cheng, I. F., Mufitikian, R., Fernando, Q., & Korte, N. (1997). Reduction of nitrate to ammonia by zero-valent iron, Chemosphere , 35(11), 2689-2695. 
El-Sheikh, S. M., Shawky, A., Abdo, S. M., Rashed, M. N., & El-Dosoqy, T. I. (2020). Preparation & characterisation of nanokaolinite photocatalyst for removal of P-nitrophenol under UV irradiation. International Journal of Nanomanufacturing, 16(3), 232-242.
Fazila, Y., Niazi, N. K., Bibi, I., Afzal, M., Hussain, K., Shahid, M., & Bundschuh, J. (2022). Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. Journal of Hazardous Materials, 422, 126926.  
Ferreira, J.R.; Lawlor, A.J.; Bates, J.M.; Clarke, K. J.and Tipping, E. (1997). Chemistry of riverine & estuarine particles from Quse-Trent system , UK.Coll.Surf. A. Physicochem. Eng.Aspects, 120,183-198. 
Furumal, H., & Ohgaki, S. (1989). Adsorption-desorption of phosphate by lake sediment under anaerobic conditions. Wat.Res.23(6),677-683.
Guanjie, J., Cao, S., Zheng, S., Qin, Z., Yan, Y., Wu, Q., & Zhang, Q. (2022). Effect of kaolinite on removal of Pb in simulated wastewater by oxalic acid–activated phosphate rock. Journal of Soils & Sediments, 22(6), 1703-1712. 
Haipeng Xi, Xiangtong Zhou, Muhammad Arslan, Zhijun Luo, Jing Wei, Zhiren Wu, Mohamed G. (2022): Heterotrophic nitrification & aerobic denitrification process: Promising but a long way to go in the wastewater treatment. Science of The Total Environment Volume 805, 150212.
Jia-Boon C., Pek-Ing A., Nabisab M. M., Mohammad K., Wendy Pei-Qin N., Priyanka J., Rashmi W., & Ezzat C. A. (2020). Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay–based adsorbent. Environmental Science & Pollution Research volume 27, pages13949–13962.
Kamilya, T., Majumder, A., Yadav, M. K., Ayoob, S., Tripathy, S., & Gupta, A. K. (2022). Nutrient pollution and its remediation using constructed wetlands: Insights into removal and recovery mechanisms, modifications and sustainable aspects. Journal of Environmental Chemical Engineering, 10, 107444
Laszl ´ o ´ K´ekedy-Nagy, Leah E., Zahra A., Mojtaba A., Bruno G. Pollet, Jennie P., & Lauren F. G. (2022). Electrochemical nutrient removal from natural wastewater sources & its impact on water quality. Water Research Volume 210, 118001.
Lead, J.R.; Hamilton-Taylor,J.; Oavison,W.& Harper, M. (1999). Trace metal sorption by natural particles & coarse colloids, Geoche.Cosmochem.Acta ,63 (11/12), 1661-    1670.
Li, Y., Xia, B., Zhao, Q., Liu, F., Zhang, PP., Du, Q., Wang, D., Li, D., Wang, Z., & Xia, Y. (2011).’’Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin.’’ J. Envir. Sci., V.23 (3), pp. 404-411.
Lin, D., Zhou, S., Shi-yang, L., Lu, C., Ling-fang, Y., Xiu-zhen, Y., & Li-shan, L. (2014). Adsorption of hexavalent chromium onto kaolin clay based adsorbent. J. Cent. South Univ., V.21, pp. 3918 - 3926.
Lixia J., Haimeng S., Qi Z., Liu Z., Weizhong W. (2021). Pilot-scale two-stage constructed wetlands based on novel solid carbon for rural wastewater treatment in southern China: Enhanced nitrogen removal & mechanism. Journal of Environmental Management Volume 292, 112750.
Maiti, A., Mule, A. A., Kumar, A., Bhatnagar, A., & Mondal, P. (2021). Polymers in Wastewater Treatment. Encyclopedia of Materials: Plastics & Polymers, 4, 392-410.
Mridul D., Dipti P., Muhammad S. S., Salisu G. A., Salisu A., & Bilkisu B. B. (2022). Water pollution: Effects on health & environment of Dala LGA, Nigeria. Materials Today: Proceeding 49, 3036-3039. https://doi.org/10.1016/j.matpr.10.496.
Ngtez, L.A.; Fuente, E.; Martnez, B., & Garca, P.A. (1999). Slaughterhouse wastewater treatment using ferric & aluminum salts & organic polyelectrolite. J. Environ.Sci., & Health PartA,34(3),721-736.
Oladipo, A.A., & Gazi, M. (2016). High boron removal by functionalized magnesium ferrite nanopowders. Environ Chem Lett 14, 373–379. https://doi.org/10.1007/s10311-016-0554-6
Pandey PK, Y Verma, S Choubey, M Pandey, & K Chandrasekhar. (2007b). Biosorptive removal of cadmium from contaminated groundwaterand industrial effluents. Bioresource technology 99 (10), 4420-4427.
Parkman, R.H.; Charnock, J.M.; Livens, F.R., & Vaughan, D.J. (1998). A study of the interaction of strontium ions in aqueous solution with the surfaces of calcite & kaolinite , Geochem.Cosmochem.Acta, 62(9),1481-1492.
Peter S. (2006). Chapter 13 – Dewatering of water treatment plant sludges. Interface Science & Technology. Volume 10, Pages 225-243 
Polprasert, C.; Dan, N.P., & Thayalakumara, N. (1996). Application of constructed wetlands to treat some toxic wastewater under tropical conditions, Wat. Sci.Tech., 34(1),165-171.
Qian Li, Zhaoping Z., Haoran D., Xiang Z., Bo Z., & Baosheng J. (2022). Co-pyrolysis of sludge & kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals. Frontiers of Environmental Science & Engineering volume 16 Article number: 85.  
Robert B., Mira L.K.S., Sirpa P., Rohan J., & Aino-Maija L. (2022). Removal & recovery of metal ions from acidic multi-metal mine water using waste digested activated sludge as biosorbent. Hydrometallurgy Volume 207, 105770.
Saleh, T.A., & Ali, I. (2018). Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye & heavy metalsTA. J. Env. Chem. Eng. 6 (4), 5361–5368.
Shaymaa T. H., & Seroor A. K. A. (2021). Removal lead Pb (II) from wastewater using kaolin clay. IOP Conference Series: Materials Science & Engineering, Volume 1058, 012069.
Soliman M. F. (2022). Assessment of an experimental unit for greywater treatment; for water conservation purposes. Aswan University Journal of Environmental Studies.3 (1) 9-21, DOI 10.21608/aujes.2022.90438.1036  
Soltan, M.E. (1991). Study of River Nile pollution .Ph.D.Thesis. Fac.Sci. Aswan. Egypt. Srivestava, S.K.; Tyagi,R., & Paut, N. (1989). Adsorption of heavy metals on carbonaceous martial developed from the waste slurry generated in local fertilizer plant, Wat.Res.,23(9),1161-1165. 
Tawfik A. S., Mujahid M., & Mazen K. (2022).  Water treatment technologies in removing heavy metal ions from wastewater: A review., Environmental Nanotechnology, Monitoring & Management 17, 100617.
Wang, T.C.; Weissman, J.C.; Ramesla, G.; Varadarajan, R., & Benemann, J.R. (1998). Heavy metal binding & removal by phormidium, Environ. Cont. Toxico., 60, 739-744. 
Weißbach, M.; Criddle, C.S. ; Drewesa, J.E.; Koch, K. (2016). A proposed nomenclature for biological processes that remove nitrogen, Environ. Sci.: Water Res. Technol. 3, 10, https://doi.org/10.1039/c6ew00216a.
Yang, Y., Li, Y., Mao, R., Shi, Y., Lin, S., Qiao, M., & Zhao, X. (2022). Removal of phosphate in secondary effluent from municipal wastewater treatment plant by iron and aluminum electrocoagulation: efficiency and mechanism. Separation and Purification Technology, 286, 120439
Zhu, W.; Zhang, P.; Dong,H.; Li , J. (2016). Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (ANAMMOX) process, J. Biosci. Bioeng. https://doi.org/10.1016/j.jbiosc.2016.11.006.