Application of Artificial Intelligence and Machine Learning in Computational Toxicology in Aquatic Toxicology

Document Type : Review Paper

Authors

1 Aquaculture of Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy

Abstract

Computational toxicology is a rapidly growing field that utilizes artificial intelligence (AI) and machine learning (ML) to predict the toxicity of chemical compounds. Computational toxicology is an important tool for assessing the risks associated with the exposure of finfish and shellfish to environmental contaminants. By providing insights into the behavior and effects of these compounds, computational models can help to inform management decisions and protect the health of aquatic ecosystems and the humans who depend on them for food and recreation. In aqua-toxicology research, Quantitative Structure-Activity Relationship (QSAR) models are commonly used to establish the relationship between chemical structures and their aquatic toxicity. Various ML algorithms have been developed to construct QSAR models, including Random Forest (RF), Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Bayesian networks (BNs), k-Nearest Neighbor (kNN), Probabilistic Neural Networks (PNNs), Naïve Bayes, and Decision Trees. Deep learning techniques, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have also been applied in computational toxicology to improve the accuracy of QSAR predictions. Moreover, data mining graphs, networks and graph kernels have been utilized to extract relevant features from chemical structures and improve predictive capabilities. In conclusion, the application of artificial intelligence and machine learning in the field of computational toxicology has immense potential to revolutionize aquatic toxicology research. Through the utilization of advanced algorithms and data analysis techniques, scientists can now better understand and predict the effects of various toxicants on aquatic organisms.

Keywords

Main Subjects


Ahmadlou, M., & Adeli, H. (2010). Enhanced probabilistic neural network with local decision circles: A robust classifier. Integrated Computer-Aided Engineering, 17(3), 197-210. https://doi.org/10.3233/ICA-2010-0345
Ai, H., Wu, X., Zhang, L., Qi, M., Zhao, Y., Zhao, Q., ... & Liu, H. (2019). QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods. Ecotoxicology and environmental safety, 179, 71-78. https://doi.org/10.1016/j.ecoenv.2019.04.035
Alsenan, S., Al-Turaiki, I., & Hafez, A. (2020). A recurrent neural network model to predict blood–brain barrier permeability. Computational Biology and Chemistry, 89, 107377. https://doi.org/10.1016/j.compbiolchem.2020.107377
Ambure, P., Barigye, S. J., & Gozalbes, R. (2021). Machine Learning Approaches in Computational Toxicology Studies. Chemometrics and Cheminformatics in Aquatic Toxicology, 125–155. https://doi.org/10.1002/9781119681397.ch7
Andayani, U., Wijaya, A., Rahmat, R. F., Siregar, B., & Syahputra, M. F. (2019, June). Fish species classification using probabilistic neural network. In Journal of Physics: Conference Series (Vol. 1235, No. 1, p. 012094). IOP Publishing. https://doi.org/10.1088/1742-6596/1235/1/012094
Jahed Armaghani, D., Asteris, P. G., Askarian, B., Hasanipanah, M., Tarinejad, R., & Huynh, V. V. (2020). Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability, 12(6), 2229. https://doi.org/10.3390/su12062229
Asha, P., Natrayan, L. B. T. J. R. R. G. S., Geetha, B. T., Beulah, J. R., Sumathy, R., Varalakshmi, G., & Neelakandan, S. (2022). IoT enabled environmental toxicology for air pollution monitoring using AI techniques. Environmental research, 205, 112574. https://doi.org/10.1016/j.envres.2
Babić, S., Barišić, J., Stipaničev, D., Repec, S., Lovrić, M., Malev, O., ... & Klobučar, G. (2018). Assessment of river sediment toxicity: Combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization. Science of the Total Environment, 643, 435-450. https://doi.org/10.1016/j.scitotenv.2018.06.124
Ballabio, D., Grisoni, F., Consonni, V., & Todeschini, R. (2019). Integrated QSAR models to predict acute oral systemic toxicity. Molecular informatics, 38(8-9), 1800124. https://doi.org/10.1002/minf.201800124
Banaee, M., Beitsayah, A., Prokić, M.D., Petrović, T.G., Zeidi, A. & Faggio, C. (2023a). Effects of cadmium chloride and biofertilizer (Bacilar) on biochemical parameters of freshwater fish, Alburnus mossulensis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 268, 109614. https://doi.org/10.1016/j.cbpc.2023.109614
Banaee, M., Faraji, J., Amini, M., Multisanti, C. R., & Faggio, C. (2023b). Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: novel pathways to investigate microplastic synergistic effects on pharmaceuticals. Aquatic Toxicology, 106627. https://doi.org/10.1016/j.aquatox.2023.106627
Banaee, M., Gholamhosseini, A., Sureda, A., Soltanian, S., Fereidouni, M. S., & Ibrahim, A. T. A. (2021). Effects of microplastic exposure on the blood biochemical parameters in the pond turtle (Emys orbicularis). Environmental Science and Pollution Research, 28, 9221-9234. https://doi.org/10.1007/s11356-020-11419-2
Banaee, M., Impellitteri, F., Evaz-Zadeh Samani, H., Piccione, G., & Faggio, C. (2022a). Dietary arthrospira platensis in rainbow trout (Oncorhynchus mykiss): a means to reduce threats caused by CdCl2 exposure?. Toxics, 10(12), 731.
Banaee, M., Sagvand, S., Sureda, A., Amini, M., Haghi, B. N., Sopjani, M., & Faggio, C. (2023c). Evaluation of single and combined effects of mancozeb and metalaxyl on the transcriptional and biochemical response of zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 268, 109597. https://doi.org/10.1016/j.cbpc.2023.109597
Banaee, M., Soltanian, S., Sureda, A., Gholamhosseini, A., Haghi, B. N., Akhlaghi, M., & Derikvandy, A. (2019). Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere, 236, 124335. https://doi.org/10.1016/j.chemosphere.2019.07.066
Banaee, M., Sureda, A., & Faggio, C. (2022b). Protective effect of protexin concentrate in reducing the toxicity of chlorpyrifos in common carp (Cyprinus carpio). Environmental Toxicology and Pharmacology, 94, 103918. https://doi.org/10.1016/j.etap.2022.103918
Banaee, M., Sureda, A., Mirvaghefi, A. R., & Ahmadi, K. (2013). Biochemical and histological changes in the liver tissue of rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of diazinon. Fish physiology and biochemistry, 39, 489-501. https://doi.org/10.1007/s10695-012-9714-1
Banaee, M., Zeidi, A., Sinha, R., & Faggio, C. (2023). Individual and Combined Toxic Effects of Nano-ZnO and Polyethylene Microplastics on Mosquito Fish (Gambusia holbrooki). Water, 15(9), 1660. https://doi.org/10.3390/w15091660
Bartell, S. M., Nair, S. K., Galic, N., & Brain, R. A. (2020). The comprehensive aquatic systems model (CASM): advancing computational capability for ecosystem simulation. Environmental Toxicology and Chemistry, 39(11), 2298-2303. https://doi.org/10.1002/etc.4843
Baskin, I. I. (2018). Machine learning methods in computational toxicology. In Methods in Molecular Biology. 119-139. https://doi.org/10.1007/978-1-4939-7899-1_5
Baskin, I. I., Palyulin, V. A., & Zefirov, N. S. (2009). Neural networks in building QSAR models. Artificial Neural Networks: Methods and Applications, 133-154. https://doi.org/10.1007/978-1-60327-101-1_8
Baumann, D., & Baumann, K. (2014). Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. Journal of cheminformatics, 6(1), 1-19. https://doi.org/10.1186/s13321-014-0047-1
Behzadi, S. S., Prakasvudhisarn, C., Klocker, J., Wolschann, P., & Viernstein, H. (2009). Comparison between two types of artificial neural networks used for validation of pharmaceutical processes. Powder Technology, 195(2), 150-157. https://doi.org/10.1016/j.powtec.2009.05.025
Bhatti, U. A., Yuan, L., Yu, Z., Nawaz, S. A., Mehmood, A., Bhatti, M. A., ... & Xiao, S. (2021). Predictive data modeling using sp-kNN for risk factor evaluation in urban demographical healthcare data. Journal of Medical Imaging and Health Informatics, 11(1), 7-14. https://doi.org/10.1166/jmihi.2021.3313
Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227. https://doi.org/10.1007/s11749-016-0481-7
Bohlen, M. L., Jeon, H. P., Kim, Y. J., & Sung, B. (2019). In silico modeling method for computational aquatic toxicology of endocrine disruptors: A software-based approach using QSAR toolbox. JoVE (Journal of Visualized Experiments), (150), e60054. https://doi.org/10.3791/60054
Boone, K. S., & Di Toro, D. M. (2019). Target site model: Predicting mode of action and aquatic organism acute toxicity using Abraham parameters and feature‐weighted k‐nearest neighbors’ classification. Environmental toxicology and chemistry, 38(2), 375-386. https://doi.org/10.1002/etc.4324
Born, J., Markert, G., Janakarajan, N., Kimber, T. B., Volkamer, A., Martínez, M. R., & Manica, M. (2023). Chemical representation learning for toxicity prediction. Digital Discovery. https://doi.org/10.1039/D2DD00099G
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. In Classification and Regression Trees. https://doi.org/10.1201/9781315139470
Bruner, L. H. (1992). Alternatives to the use of animals in household product and cosmetic testing. Journal of the American Veterinary Medical Association, 200(5), 669-673.
Carpenter, A. (2019). Oil pollution in the North Sea: the impact of governance measures on oil pollution over several decades. Hydrobiologia, 845(1), 109-127. https://doi.org/10.1007/s10750-018-3559-2
Cassotti, M., Ballabio, D., Consonni, V., Mauri, A., Tetko, I. V, & Todeschini, R. (2014). Prediction of acute aquatic toxicity toward daphnia magna by using the ga-k nn method. Alternatives to Laboratory Animals, 42(1), 31–41. https://doi.org/10.1177/026119291404200106
Ceyhan, B. (2022). Assessing the ethical concerns of science and biology teachers regarding regarding animal experimentation _ Contemporary Educational Researches Journal. 12 (3), 167–176.
Chen, M., Liu, J., Liao, T. J., Ashby, K., Wu, Y., Wu, L., ... & Hong, H. (2023). Computational Modeling for the Prediction of Hepatotoxicity Caused by Drugs and Chemicals. In Machine Learning and Deep Learning in Computational Toxicology (pp. 541-561). https://doi.org/10.1007/978-3-031-20730-3_23
Chen, Q., Allgeier, A., Yin, D., & Hollert, H. (2019). Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environment international, 130, 104938. https://doi.org/10.1016/j.envint.2019.104938
Chen, S., Sun, G., Fan, T., Li, F., Xu, Y., Zhang, N., Zhao, L., & Zhong, R. (2023). Ecotoxicological QSAR study of fused/non-fused polycyclic aromatic hydrocarbons (FNFPAHs): Assessment and priority ranking of the acute toxicity to Pimephales promelas by QSAR and consensus modeling methods. Science of The Total Environment, 876, 162736. https://doi.org/10.1016/j.scitotenv.2023.162736
Cheng, F., Shen, J., Yu, Y., Li, W., Liu, G., Lee, P. W., & Tang, Y. (2011). In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods. Chemosphere, 82(11), 1636-1643. https://doi.org/10.1016/j.chemosphere.2010.11.043
Choudhuri, S., Yendluri, M., Poddar, S., Li, A., Mallick, K., Mallik, S., & Ghosh, B. (2023). Recent Advancements in Computational Drug Design Algorithms through Machine Learning and Optimization. Kinases and Phosphatases, 1(2), 117–140. https://doi.org/10.3390/kinasesphosphatases1020008
Cook, D. J., & Holder, L. B. (2000). Graph-based data mining. IEEE Intelligent Systems and Their Applications, 15(2), 32-41. https://doi.org/10.1109/5254.850825
Corani, G., Magli, C., Giusti, A., Gianaroli, L., & Gambardella, L. M. (2013). A Bayesian network model for predicting pregnancy after in vitro fertilization. Computers in biology and medicine, 43(11), 1783-1792. https://doi.org/10.1016/j.compbiomed.2013.07.035
Cova, T. F., & Pais, A. A. (2019). Deep learning for deep chemistry: optimizing the prediction of chemical patterns. Frontiers in chemistry, 7, 809. https://doi.org/10.3389/fchem.2019.00809
Cronin, M. T., & Yoon, M. (2019). Computational methods to predict toxicity. In The history of alternative test methods in toxicology (pp. 287-300). Academic Press. https://doi.org/10.1016/B978-0-12-813697-3.00031-7
De, P., Kar, S., Ambure, P., & Roy, K. (2022). Prediction reliability of QSAR models: an overview of various validation tools. Archives of Toxicology, 96(5), 1279-1295. https://doi.org/10.1007/s00204-022-03252-y
De Vera Mudry, M. C., Martin, J., Schumacher, V., & Venugopal, R. (2021). Deep learning in toxicologic pathology: a new approach to evaluate rodent retinal atrophy. Toxicologic Pathology, 49(4), 851-861. https://doi.org/10.1177/0192623320980674
Derikvandy, A., Pourkhabbaz, H. R., Banaee, M., Sureda, A., Haghi, N., & Pourkhabbaz, A. R. (2020). Genotoxicity and oxidative damage in zebrafish (Danio rerio) after exposure to effluent from ethyl alcohol industry. Chemosphere, 251, 126609. https://doi.org/10.1016/j.chemosphere.2020.126609
Dobchev, D., & Karelson, M. (2016). Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework? Expert opinion on drug discovery, 11(7), 627-639. https://doi.org/10.1080/17460441.2016.1186876
Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review, 40, 100379. https://doi.org/10.1016/j.cosrev.2021.100379
Ekins, S. (2014). Progress in computational toxicology. Journal of pharmacological and toxicological methods, 69(2), 115-140. https://doi.org/10.1016/j.vascn.2013.12.003
Fan, J., Huang, G., Chi, M., Shi, Y., Jiang, J., Feng, C., ... & Xu, Z. (2021). Prediction of chemical reproductive toxicity to aquatic species using a machine learning model: An application in an ecological risk assessment of the Yangtze River, China. Science of The Total Environment, 796, 148901. https://doi.org/10.1016/j.scitotenv.2021.148901
Farzaneh, G., Khorasani, N., Ghodousi, J., & Panahi, M. (2021). Assessment of surface and groundwater resources quality close to municipal solid waste landfill using multiple indicators and multivariate statistical methods. International Journal of Environmental Research, 15, 383-394. https://doi.org/10.1007/s41742-020-00307-9
Fei-xiong, C., Jie, S., Wei-hua, L. I., & Yun, T. (2010). In silico prediction of terrestrial and aquatic toxicities for organic chemicals. Journal of Pesticide Science, 12(4), 477–488.
Gajewicz-Skretna, A., Furuhama, A., Yamamoto, H., & Suzuki, N. (2021). Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. Chemosphere, 280, 130681. https://doi.org/10.1016/j.chemosphere.2021.130681
Gholamhosseini, A., Banaee, M., Sureda, A., Timar, N., Zeidi, A., & Faggio, C. (2023). Physiological response of freshwater crayfish, Astacus leptodactylus exposed to polyethylene microplastics at different temperature. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 267, 109581. https://doi.org/10.1016/j.cbpc.2023.109581
Gramatica, P. (2020). Principles of QSAR modeling: comments and suggestions from personal experience. International Journal of Quantitative Structure-Property Relationships (IJQSPR), 5(3), 61-97. https://doi.org/10.4018/ijqspr.20200701.oa1
Gramatica, P., & Sangion, A. (2016). A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. Journal of chemical information and modeling, 56(6), 1127-1131. https://doi.org/10.1021/acs.jcim.6b00088
Green, A. J., Mohlenkamp, M. J., Das, J., Chaudhari, M., Truong, L., Tanguay, R. L., & Reif, D. M. (2021). Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology. PLOS Computational Biology, 17(7), e1009135. https://doi.org/10.1371/journal.pcbi.1009135
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
Guan, M. (2023). Machine Learning for Analyzing Drug Safety in Electronic Health Records. In Machine Learning and Deep Learning in Computational Toxicology (pp. 595–610). Springer. https://doi.org/10.1007/978-3-031-20730-3_26
Guo, X., & Wang, J. (2021). Projecting the sorption capacity of heavy metal ions onto microplastics in global aquatic environments using artificial neural networks. Journal of Hazardous Materials, 402, 123709. https://doi.org/10.1016/j.jhazmat.2020.123709
Hakim, R. A., Aditsania, A., & Kurniawan, I. (2022). QSAR Study on Aromatic Disulfide Compounds as SARS-CoV Mpro Inhibitor Using Genetic Algorithm-Support Vector Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v7i2.1428
Harada, S., Akita, H., Tsubaki, M., Baba, Y., Takigawa, I., Yamanishi, Y., & Kashima, H. (2020). Dual graph convolutional neural network for predicting chemical networks. BMC bioinformatics, 21, 1-13. https://doi.org/10.1186/s12859-020-3378-0
He, L., Xiao, K., Zhou, C., Li, G., Yang, H., Li, Z., & Cheng, J. (2019). Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna. Ecotoxicology and environmental safety, 173, 285-292. https://doi.org/10.1016/j.ecoenv.2019.02.014
Heo, S., Safder, U., & Yoo, C. (2019). Deep learning driven QSAR model for environmental toxicology: effects of endocrine disrupting chemicals on human health. Environmental Pollution, 253, 29-38. https://doi.org/10.1016/j.envpol.2019.06.081
Hoarau, A., Martin, A., Dubois, J. C., & Le Gall, Y. (2023). Evidential Random Forests. Expert Systems with Applications, 230, 120652. https://doi.org/10.1016/j.eswa.2023.120652
Huuskonen, J. (2003). QSAR modeling with the electrotopological state indices: predicting the toxicity of organic chemicals. Chemosphere, 50(7), 949-953. https://doi.org/10.1016/S0045-6535(02)00172-8
Idakwo, G., Thangapandian, S., Luttrell IV, J., Zhou, Z., Zhang, C., & Gong, P. (2019). Deep learning-based structure-activity relationship modeling for multi-category toxicity classification: a case study of 10K Tox21 chemicals with high-throughput cell-based androgen receptor bioassay data. Frontiers in physiology, 10, 1044. https://doi.org/10.3389/fphys.2019.01044
In, Y. Y., Lee, S. K., Kim, P. J., & No, K. T. (2012). Prediction of acute toxicity to fathead minnow by local model based QSAR and global QSAR approaches. Bulletin of the Korean Chemical Society, 33(2), 613-619. https://doi.org/10.5012/bkcs.2012.33.2.613
Ivanciuc, O. (2002). Support vector machine identification of the aquatic toxicity mechanism of organic compounds. Internet Electron. J. Mol. Des, 1, 157–172.
Jain, B., & Rawat, R. (2023). QSAR and ANN-based molecular modeling. In Computational Modelling and Simulations for Designing of Corrosion Inhibitors (pp. 183–199). Elsevier. https://doi.org/10.1016/B978-0-323-95161-6.00006-0
Javahershenas, M., Nabizadeh, R., Alimohammadi, M., & Mahvi, A. H. (2022). The effects of Lahijan landfill leachate on the quality of surface and groundwater resources. International Journal of Environmental Analytical Chemistry, 102(2), 558-574. https://doi.org/10.1080/03067319.2020.1724984
Jeong, J., & Choi, J. (2022). Artificial intelligence-based toxicity prediction of environmental chemicals: future directions for chemical management applications. Environmental Science & Technology, 56(12), 7532-7543. https://doi.org/10.1021/acs.est.1c07413
Ji, M., Liu, Z., Sun, K., Li, Z., Fan, X., & Li, Q. (2021). Bacteriophages in water pollution control: Advantages and limitations. Frontiers of Environmental Science & Engineering, 15, 1-15. https://doi.org/10.1007/s11783-020-1378-y
Jia, X., Wang, T., & Zhu, H. (2023). Advancing Computational Toxicology by Interpretable Machine Learning. Environmental Science & Technology. https://doi.org/10.1021/acs.est.3c00653
Kaiser, K. L. E., Niculescu, S. P., & Schultz, T. W. (2002). Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors. SAR and QSAR in Environmental Research, 13(1), 57-67. https://doi.org/10.1080/10629360290002217
Kang, H. S., Choi, Y. S., Yu, J. S., Jin, S. W., Lee, J. M., & Kim, Y. J. (2022). Hyperparameter Tuning of OC-SVM for Industrial Gas Turbine Anomaly Detection. Energies, 15(22), 8757. https://doi.org/10.3390/en15228757
Kapsiani, S., & Howlin, B. J. (2021). Random forest classification for predicting lifespan-extending chemical compounds. Scientific reports, 11(1), 13812. https://doi.org/10.1038/s41598-021-93070-6
Kar, S., & Leszczynski, J. (2019). Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics, 7(1), 15. https://doi.org/10.3390/toxics7010015
Karim, A., Mishra, A., Newton, M. A. H., & Sattar, A. (2019). Efficient toxicity prediction via simple features using shallow neural networks and decision trees. Acs Omega, 4(1), 1874–1888. https://doi.org/10.1021/acsomega.8b03173
Kayes, M. I., Prome, R. F., Noor, M., Bhowmik, S., & Ahmed, M. (2022). An Efficient and Lightweight Convolutional Neural Network for Carcinogenic Polyp Identification. 2022 International Conference on Innovations in Science, Engineering and Technology, ICISET 2022. https://doi.org/10.1109/ICISET54810.2022.9775824
Kim, J., Yuk, H., Choi, B., Yang, M., Choi, S., Lee, K.-J., Lee, S., & Heo, T.-Y. (2023). New machine learning-based automatic high-throughput video tracking system for assessing water toxicity using Daphnia Magna locomotory responses. Scientific Reports, 13(1), 3530. https://doi.org/10.1038/s41598-023-27554-y
Kingsford, C., & Salzberg, S. L. (2008). What are decision trees?. Nature biotechnology, 26(9), 1011-1013. https://doi.org/10.1038/nbt0908-1011
Kluxen, F. M., & Hothorn, L. A. (2020). Alternatives to statistical decision trees in regulatory (eco-) toxicological bioassays. Archives of toxicology, 94(4), 1135-1149.https://doi.org/10.1007/s00204-020-02690-w
Koutsoukas, A., St. Amand, J., Mishra, M., & Huan, J. (2016). Predictive toxicology: modeling chemical induced toxicological response combining circular fingerprints with random forest and support vector machine. Frontiers in Environmental Science, 4, 11. https://doi.org/10.3389/fenvs.2016.00011
Kovačević, S., Banjac, M. K., Podunavac-Kuzmanović, S., Ajduković, J., Salaković, B., Rárová, L., ... & Ivanov, M. (2023). Local QSAR modeling of cytotoxic activity of newly designed androstane 3-oximes towards malignant melanoma cells. Journal of Molecular Structure, 1283, 135272. https://doi.org/10.1016/j.molstruc.2023.135272
Kovács, D., Király, P., & Tóth, G. (2021). Sample-size dependence of validation parameters in linear regression models and in QSAR. SAR and QSAR in Environmental Research, 32(4), 247-268. https://doi.org/10.1080/1062936X.2021.1890208
Kovalenko, I., Davydenko, Y., & Shved, A. (2019). Modeling uncertain situations in decision-making with influence diagrams. In CEUR Workshop Proceedings (pp. 106-115).
Krogh, A. (2008). What are artificial neural networks?. Nature biotechnology, 26(2), 195-197. https://doi.org/10.1038/nbt1386
Kumar, B., Vyas, O. P., & Vyas, R. (2019). A comprehensive review on the variants of support vector machines. Modern Physics Letters B, 33(25), 1950303. https://doi.org/10.1142/S0217984919503032
Kumar, K. P., Pravalika, A., Sheela, R. P., & Vishwam, Y. (2022, May). Disease Prediction Using Machine Learning Algorithms KNN and CNN. In IJRASET (p. IJRASET42214). https://doi.org/10.22214/ijraset.2022.42214
Kusko, R., & Hong, H. (2019). Computational toxicology promotes regulatory science. In Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science (pp. 1-11). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-16443-0_1
Kwon, S., Bae, H., Jo, J., & Yoon, S. (2019). Comprehensive ensemble in QSAR prediction for drug discovery. BMC bioinformatics, 20(1), 1-12. https://doi.org/10.1186/s12859-019-3135-4
Lacroix, G., Koch, W., Ritter, D., Gutleb, A. C., Larsen, S. T., Loret, T., ... & Kooter, I. (2018). Air–liquid interface in vitro models for respiratory toxicology research: consensus workshop and recommendations. Applied in vitro toxicology, 4(2), 91-106. https://doi.org/10.1089/aivt.2017.0034
Langford, A. M., Bolton, J. R., Carlin, M. G., & Palmer, R. (2015). Post-mortem toxicology: A pilot study to evaluate the use of a Bayesian network to assess the likelihood of fatality. Journal of forensic and legal medicine, 33, 82-90. https://doi.org/10.1016/j.jflm.2015.04.013
Oh Lee, Y., & Sung, B. (2021). In silico platforms for predictive ecotoxicology: From machine learning to deep learning. Chemometrics and Cheminformatics in Aquatic Toxicology, 453-471. https://doi.org/10.1002/9781119681397.ch23
Lepailleur, A., Poezevara, G., & Bureau, R. (2013). Automated detection of structural alerts (chemical fragments) in (eco) toxicology. Computational and structural biotechnology journal, 5(6), e201302013. https://doi.org/10.5936/csbj.201302013
Li, F., Fan, D., Wang, H., Yang, H., Li, W., Tang, Y., & Liu, G. (2017). In silico prediction of pesticide aquatic toxicity with chemical category approaches. Toxicology research, 6(6), 831-842. https://doi.org/10.1039/c7tx00144d
Li, H., Wang, X., Mai, Y., Lai, Z., & Zeng, Y. (2023). Potential of microplastics participate in selective bioaccumulation of low-ring polycyclic aromatic hydrocarbons depending on the biological habits of fishes. Science of The Total Environment, 858, 159939. https://doi.org/10.1016/j.scitotenv.2022.159939
Lin, Z., & Chou, W. C. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1), 7-19. https://doi.org/10.1093/toxsci/kfac075
Liu, B., Li, C.-C., & Yan, K. (2020). DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Briefings in Bioinformatics, 21(5), 1733–1741. https://doi.org/10.1093/bib/bbz098
Lodhi, H., Muggleton, S., & Sternberg, M. J. (2010). Multi‐class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods. Molecular Informatics, 29(8‐9), 655-664. https://doi.org/10.1002/minf.201000083
Luan, F., Zhang, R., Zhao, C., Yao, X., Liu, M., Hu, Z., & Fan, B. (2005). Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis. Chemical research in toxicology, 18(2), 198-203. https://doi.org/10.1021/tx049782q
Luijten, M., Wackers, P. F., Rorije, E., Pennings, J. L., & Heusinkveld, H. J. (2020). Relevance of in vitro transcriptomics for in vivo mode of action assessment. Chemical Research in Toxicology, 34(2), 452-459. https://doi.org/10.1021/acs.chemrestox.0c00313
Maertens, A., Golden, E., Luechtefeld, T. H., Hoffmann, S., Tsaioun, K., & Hartung, T. (2022). Probabilistic risk assessment–the keystone for the future of toxicology. Altex, 39(1), 3. https://doi.org/10.14573/altex.2201081
Maertens, A., Golden, E., Luechtefeld, T. H., Hoffmann, S., Tsaioun, K., & Hartung, T. (2022). Probabilistic risk assessment–the keystone for the future of toxicology. Altex, 39(1), 3. https://doi.org/10.1016/B978-0-12-816514-0.00014-X
Mahé, P., & Vert, J. P. (2009). Graph kernels based on tree patterns for molecules. Machine learning, 75(1), 3-35. https://doi.org/10.1007/s10994-008-5086-2
Mahé, P., Ueda, N., Akutsu, T., Perret, J. L., & Vert, J. P. (2005). Graph kernels for molecular structure− activity relationship analysis with support vector machines. Journal of chemical information and modeling, 45(4), 939-951. https://doi.org/10.1021/ci050039t
Mammone, A., Turchi, M., & Cristianini, N. (2009). Support vector machines. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3), 283–289. https://doi.org/10.1002/wics.49
Marzo, M., Lavado, G. J., Como, F., Toropova, A. P., Toropov, A. A., Baderna, D., ... & Benfenati, E. (2020). QSAR models for biocides: The example of the prediction of Daphnia magna acute toxicity. SAR and QSAR in Environmental Research, 31(3), 227-243. https://doi.org/10.1080/1062936X.2019.1709221
Matsuzaka, Y., & Uesawa, Y. (2023). Computational Models That Use a Quantitative Structure–Activity Relationship Approach Based on Deep Learning. Processes, 11(4), 1296. https://doi.org/10.3390/pr11041296
McNamee, P., Hibatallah, J., Costabel-Farkas, M., Goebel, C., Araki, D., Dufour, E., ... & Scheel, J. (2009). A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: eye irritation. Regulatory Toxicology and Pharmacology, 54(2), 197-209. https://doi.org/10.1016/j.yrtph.2009.04.004
Meenakshi, D. U., Nandakumar, S., Francis, A. P., Sweety, P., Fuloria, S., Fuloria, N. K., Subramaniyan, V., & Khan, S. A. (2022). Deep Learning and Site‐Specific Drug Delivery: The Future and Intelligent Decision Support for Pharmaceutical Manufacturing Science. Deep Learning for Targeted Treatments: Transformation in Healthcare, 1–38. https://doi.org/10.1002/9781119857983.ch1
Miccio, L. A., & Schwartz, G. A. (2020). From chemical structure to quantitative polymer properties prediction through convolutional neural networks. Polymer, 193, 122341. https://doi.org/10.1016/j.polymer.2020.122341
Michielan, L., Pireddu, L., Floris, M., & Moro, S. (2010). Support vector machine (SVM) as alternative tool to assign acute aquatic toxicity warning labels to chemicals. Molecular informatics, 29(1‐2), 51-64. https://doi.org/10.1002/minf.200900005
Mistry, P., Neagu, D., Trundle, P. R., & Vessey, J. D. (2016). Using random forest and decision tree models for a new vehicle prediction approach in computational toxicology. Soft Computing, 20, 2967-2979. https://doi.org/10.1007/s00500-015-1925-9
Modabberi, A., Noori, R., Madani, K., Ehsani, A. H., Mehr, A. D., Hooshyaripor, F., & Kløve, B. (2020). Caspian Sea is eutrophying: The alarming message of satellite data. Environmental Research Letters, 15(12), 124047. https://doi.org/10.1088/1748-9326/abc6d3
Moe, S. J., Carriger, J. F., & Glendell, M. (2021). Increased use of Bayesian network models has improved environmental risk assessments. Integrated Environmental Assessment and Management, 17(1), 53-61. https://doi.org/10.1002/ieam.4369
Mooney, S. J., & Pejaver, V. (2018). Big data in public health: terminology, machine learning, and privacy. Annual review of public health, 39, 95-112. https://doi.org/10.1146/annurev-publhealth-040617-014208
Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment international, 32(8), 967-976. https://doi.org/10.1016/j.envint.2006.06.014
Mozafari, Z., Noori, R., Siadatmousavi, S. M., Afzalimehr, H., & Azizpour, J. (2023). Satellite‐Based Monitoring of Eutrophication in the Earth’s Largest Transboundary Lake. GeoHealth, 7(5), e2022GH000770. https://doi.org/10.1029/2022GH000770
Mu’azu, N. D., & Olatunji, S. O. (2023). K-nearest neighbor based computational intelligence and RSM predictive models for extraction of Cadmium from contaminated soil. Ain Shams Engineering Journal, 14(4), 101944. https://doi.org/10.1016/j.asej.2022.101944
Netzeva, T., Pavan, M., & Worth, A. (2007). Review of data sources, QSARs and integrated testing strategies for aquatic toxicity. In JRC Scientific and Technical Reports, EUR. https://publications.jrc.ec.europa.eu/repository/handle/JRC43068
Niculescu, S. P. (2003). Artificial neural networks and genetic algorithms in QSAR. Journal of molecular structure: THEOCHEM, 622(1-2), 71-83. https://doi.org/10.1016/S0166-1280(02)00619-X
Nikinmaa, M. (2014). An Introduction to Aquatic Toxicology. In An Introduction to Aquatic Toxicology. https://doi.org/10.1016/C2012-0-07948-3
Noman, M. A., Feng, W., Zhu, G., Hossain, M. B., Chen, Y., Zhang, H., & Sun, J. (2022). Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China. Scientific Reports, 12(1), 4634. https://doi.org/10.1038/s41598-022-11186-9
Noori, R., Karbassi, A. R., Ashrafi, K., Ardestani, M., & Mehrdadi, N. (2013). Development and application of reduced‐order neural network model based on proper orthogonal decomposition for BOD 5 monitoring: Active and online prediction. Environmental progress & sustainable energy, 32(1), 120-127.  https://doi.org/10.1002/ep.10611
Noori, R., Karbassi, A., Ashrafi, K., Ardestani, M., Mehrdadi, N., & Nabi Bidhendi, G. R. (2012). Active and online prediction of BOD 5 in river systems using reduced-order support vector machine. Environmental Earth Sciences, 67, 141-149. https://doi.org/10.1007/s12665-011-1487-9
Oo, M. C. M., & Thein, T. (2022). An efficient predictive analytics system for high dimensional big data. Journal of King Saud University-Computer and Information Sciences, 34(1), 1521-1532. https://doi.org/10.1016/j.jksuci.2019.09.001
Ospina, J. D., Zhu, J., Chira, C., Bossi, A., Delobel, J. B., Beckendorf, V., ... & de Crevoisier, R. (2014). Random forests to predict rectal toxicity following prostate cancer radiation therapy. International Journal of Radiation Oncology* Biology* Physics, 89(5), 1024-1031. https://doi.org/10.1016/j.ijrobp.2014.04.027
Pantic, I., Paunovic, J., Cumic, J., Valjarevic, S., Petroianu, G. A., & Corridon, P. R. (2023). Artificial neural networks in contemporary toxicology research. Chemico-Biological Interactions, 110269. https://doi.org/10.1016/j.cbi.2022.110269
Pereira, S., & Tettamanti, M. (2011). Testing times in toxicology-In Vitro vs In Vivo Testing. Proceedings of Animal Alternatives in Teaching, Toxicity Testing and Medicine. ALTEX Proceedings, 2(1), 13.
Polishchuk, P. G., Muratov, E. N., Artemenko, A. G., Kolumbin, O. G., Muratov, N. N., & Kuz’min, V. E. (2009). Application of random forest approach to QSAR prediction of aquatic toxicity. Journal of chemical information and modeling, 49(11), 2481-2488. https://doi.org/10.1021/ci900203n
Rácz, A., Bajusz, D., & Héberger, K. (2019). Intercorrelation limits in molecular descriptor preselection for QSAR/QSPR. Molecular informatics, 38(8-9), 1800154. https://doi.org/10.1002/minf.201800154
Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(2), 147-172. https://doi.org/10.1002/wcms.1240
Rand, G. M., Wells, P. G., & McCarty, L. S. (2020). Introduction to aquatic toxicology. In Fundamentals of aquatic toxicology (pp. 3-67). CRC Press. https://doi.org/10.1201/9781003075363-2
Regier, N., Cosio, C., von Moos, N., & Slaveykova, V. I. (2015). Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere, 128, 56-61. https://doi.org/10.1016/j.chemosphere.2014.12.078
Reisfeld, B., & Mayeno, A. N. (2012). What is computational toxicology? (pp. 3-7). Humana Press. https://doi.org/10.1007/978-1-62703-50-2_1
Rodríguez-Pérez, R., & Bajorath, J. (2022). Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. Journal of Computer-Aided Molecular Design, 36(5), 355-362. https://doi.org/10.1007/s10822-022-00442-9
Saha, N., Show, A. K., Das, P., & Nanda, S. (2021). Performance Comparison of Different Kernel Tricks Based on SVM Approach for Parkinson’s Disease Detection. In 2021 2nd International Conference for Emerging Technology (INCET) (pp. 1-4). IEEE. https://doi.org/10.1109/INCET51464.2021.9456233
Saigo, H., Krämer, N., & Tsuda, K. (2008). Partial least squares regression for graph mining. In Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 578-586). https://doi.org/10.1145/1401890.1401961
Samim, A. R., Arshad, M., & Vaseem, H. (2022). An insight into various biomarkers to study toxicological impact of nanoparticles in fishes: explored and missing information. International Journal of Environmental Science and Technology, 1-20. https://doi.org/10.1007/s13762-022-04488-y
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
Sattlecker, M., Bessant, C., Smith, J., & Stone, N. (2010). Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics. Analyst, 135(5), 895-901. https://doi.org/10.1039/b920229c
Schmidt, S. N., & Burgess, R. M. (2020). Evaluating polymeric sampling as a tool for predicting the bioaccumulation of polychlorinated biphenyls by fish and shellfish. Environmental science & technology, 54(16), 9729-9741. https://doi.org/10.1021/acs.est.9b07292
Segler, M. H., Kogej, T., Tyrchan, C., & Waller, M. P. (2018). Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1), 120-131. https://doi.org/10.1021/acscentsci.7b00512
Silva, M. H. (2020). Use of computational toxicology (CompTox) tools to predict in vivo toxicity for risk assessment. Regulatory Toxicology and Pharmacology, 116, 104724. https://doi.org/10.1016/j.yrtph.2020.104724
Silva, M. H., & Kwok, A. (2020). Open access ToxCast/Tox21, toxicological priority index (ToxPi) and integrated chemical environment (ICE) models rank and predict acute pesticide toxicity: a case study. Int J Toxicol Envr Health, 5(1), 102–125.
Silva, M., & Kwok, R. K. H. (2022). Use of computational toxicology tools to predict in vivo endpoints associated with Mode of Action and the endocannabinoid system: A case study with chlorpyrifos, chlorpyrifos-oxon and Δ9Tetrahydrocannabinol. Current Research in Toxicology, 3, 100064. https://doi.org/10.1016/j.crtox.2022.100064
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489. https://doi.org/10.1038/nature16961
Singh, A. V., Chandrasekar, V., Paudel, N., Laux, P., Luch, A., Gemmati, D., Tissato, V., Prabhu, K. S., Uddin, S., & Dakua, S. P. (2023). Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomedicine & Pharmacotherapy, 163, 114784. https://doi.org/10.1016/j.biopha.2023.114784
Singh, K. P., Gupta, S., & Basant, N. (2015). QSTR modeling for predicting aquatic toxicity of pharmacological active compounds in multiple test species for regulatory purpose. Chemosphere, 120, 680-689. https://doi.org/10.1016/j.chemosphere.2014.10.025
Singh, K. P., Gupta, S., Basant, N., & Mohan, D. (2014). QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes. Chemical Research in Toxicology, 27(9), 1504-1515. https://doi.org/10.1021/tx500100m
Singh, K. P., Gupta, S., & Rai, P. (2013). Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches. Ecotoxicology and environmental safety, 95, 221-233. https://doi.org/10.1016/j.ecoenv.2013.05.017
Sollazzo, A., Brzozowska, B., Cheng, L., Lundholm, L., Scherthan, H., & Wojcik, A. (2018). Live dynamics of 53BP1 foci following simultaneous induction of clustered and dispersed DNA damage in U2OS cells. International journal of molecular sciences, 19(2), 519. https://doi.org/10.3390/ijms19020519
Souza, T. M., Kleinjans, J. C., & Jennen, D. G. (2019). Toxicogenomics and Toxicoinformatics: Supporting Systems Biology in the Big Data Era. In Big Data in Predictive Toxicology (pp. 214-241). https://doi.org/10.1039/9781782623656-00214
Sperotto, A., Molina, J. L., Torresan, S., Critto, A., Pulido-Velazquez, M., & Marcomini, A. (2019). Water quality sustainability evaluation under uncertainty: A multi-scenario analysis based on Bayesian networks. Sustainability, 11(17), 4764. https://doi.org/10.3390/su11174764
Spînu, N., Cronin, M. T., Lao, J., Bal-Price, A., Campia, I., Enoch, S. J., ... & Worth, A. P. (2022). Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. Computational Toxicology, 21, 100206. https://doi.org/10.1016/j.comtox.2021.100206
Steger-Hartmann, T. (2013). Guest Editorial: Advances in Computational Toxicology. Molecular Informatics, 32(1), 9-9. https://doi.org/10.1002/minf.201380131
Sun, D., Lin, X., Lu, Z., Huang, J., Li, G., & Xu, J. (2022). Process evaluation of urban river replenished with reclaimed water from a wastewater treatment plant based on the risk of algal bloom and comprehensive acute toxicity. Water Reuse, 12(1), 1-10. https://doi.org/10.2166/wrd.2021.023
Sun, L., Zhang, C., Chen, Y., Li, X., Zhuang, S., Li, W., Liu, G., Lee, P. W., & Tang, Y. (2015). In silico prediction of chemical aquatic toxicity with chemical category approaches and substructural alerts. Toxicology Research, 4(2), 452–463. https://doi.org/10.1039/c4tx00174e
Sun, X., Ma, L., Du, X., Feng, J., & Dong, K. (2018, December). Deep convolution neural networks for drug-drug interaction extraction. In 2018 IEEE International conference on bioinformatics and biomedicine (BIBM) (pp. 1662-1668). IEEE. https://doi.org/10.1109/BIBM.2018.8621405
Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of chemical information and computer sciences, 43(6), 1947-1958. https://doi.org/10.1021/ci034160g
Swamidass, S. J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., & Baldi, P. (2005). Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 21(suppl_1), i359-i368. https://doi.org/10.1093/bioinformatics/bti1055
Takigawa, I., & Mamitsuka, H. (2013). Graph mining: procedure, application to drug discovery and recent advances. Drug discovery today, 18(1-2), 50-57. https://doi.org/10.1016/j.drudis.2012.07.016
Tan, H., Jin, J., Fang, C., Zhang, Y., Chang, B., Zhang, X., Yu, H., & Shi, W. (2023). Deep Learning in Environmental Toxicology: Current Progress and Open Challenges. ACS ES&T Water. https://doi.org/10.1021/acsestwater.3c00152
Tandon, A., Howard, B., Ramaiahgari, S., Maharana, A., Ferguson, S., Shah, R., & Merrick, B. A. (2022). Deep learning image analysis of high-throughput toxicology assay images. SLAS Discovery, 27(1), 29-38. https://doi.org/10.1016/j.slasd.2021.10.014
Tang, X., Zhao, W., & Yu, Q. (2022). Applications of QSAR in Toxicological Risk Assessment of Medical Devices. Zhongguo yi Liao qi xie za zhi= Chinese Journal of Medical Instrumentation, 46(2), 200-205. https://doi.org/10.3969/j.issn.1671-7104.2022.02.018
Tanveer, M., Rajani, T., Rastogi, R., Shao, Y.-H., & Ganaie, M. A. (2022). Comprehensive review on twin support vector machines. Annals of Operations Research, 1–46. https://doi.org/10.1007/s10479-022-04575-w
Tetko, I. V., Klambauer, G., Clevert, D. A., Shah, I., & Benfenati, E. (2022). Artificial intelligence meets toxicology. Chemical research in toxicology, 35(8), 1289-1290. https://doi.org/10.1021/acs.chemrestox.2c00196
Thafar, M. A., Alshahrani, M., Albaradei, S., Gojobori, T., Essack, M., & Gao, X. (2022). Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning. Scientific reports, 12(1), 4751. https://doi.org/10.1038/s41598-022-08787-9
Todeschini, R., Consonni, V., & Mannhold, R. (2000). Methods and principles in medicinal chemistry. Kubinyi H, Timmerman H (Series eds) Handbook of molecular descriptors. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527628766
Toropova, A. P., Toropov, A. A., Roncaglioni, A., & Benfenati, E. (2023). The System of Self-Consistent Models: QSAR Analysis of Drug-Induced Liver Toxicity. Toxics, 11(5), 419. https://doi.org/10.1002/9783527628766
Trinh, T. X., Seo, M., Yoon, T. H., & Kim, J. (2022). Developing random forest based QSAR models for predicting the mixture toxicity of TiO2 based nano-mixtures to Daphnia magna. NanoImpact, 25, 100383. https://doi.org/10.1016/j.impact.2022.100383
Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular informatics, 29(6‐7), 476-488. https://doi.org/10.1002/minf.201000061
Tugcu, G., Sipahi, H., Charehsaz, M., Aydın, A., & Saçan, M. T. (2023). Computational toxicology of pharmaceuticals. In Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development (pp. 519–537). Elsevier. https://doi.org/10.1016/B978-0-443-18638-7.00007-4
Uesawa, Y. (2016). Rigorous selection of random forest models for identifying compounds that activate toxicity-related pathways. Frontiers in Environmental Science, 4, 9. https://doi.org/10.3389/fenvs.2016.00009
Varghese, A., Agyeman-Badu, G., & Cawley, M. (2020). Deep learning in automated text classification: a case study using toxicological abstracts. Environment Systems and Decisions, 40(4), 465-479. https://doi.org/10.1007/s10669-020-09763-2
Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., & Borgwardt, K. M. (2010). Graph kernels. Journal of Machine Learning Research, 11, 1201–1242. https://hdl.handle.net/11858/00-001M-0000-0013-C0B0-C
Vracko, M. (2005). Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies. Current Computer-Aided Drug Design, 1(1), 73-78. https://doi.org/10.2174/1573409052952224
Walker, T. R., & Fequet, L. (2023). Current trends of unsustainable plastic production and micro (nano) plastic pollution. TrAC Trends in Analytical Chemistry, 116984. https://doi.org/10.1016/j.trac.2023.116984
Wang, M. W., Goodman, J. M., & Allen, T. E. (2021). Machine learning in predictive toxicology: recent applications and future directions for classification models. Chemical research in toxicology, 34(2), 217-239. https://doi.org/10.1021/acs.chemrestox.0c00316
Wang, Z., & Chen, J. (2019). Background, tasks, modeling methods, and challenges for computational toxicology. Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science, 15-36. https://doi.org/10.1007/978-3-030-16443-0_2
Wang, Z., Chen, J., & Hong, H. (2021). Developing QSAR models with defined applicability domains on PPARγ binding affinity using large data sets and machine learning algorithms. Environmental Science & Technology, 55(10), 6857-6866. https://doi.org/10.1021/acs.est.0c07040
Waske, B., van der Linden, S., Benediktsson, J. A., Rabe, A., & Hostert, P. (2010). Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 48(7), 2880-2889. https://doi.org/10.1109/TGRS.2010.2041784
Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). Naïve Bayes. Encyclopedia of Machine Learning, 15(1), 713–714.
Wen, M., Zhang, Z., Niu, S., Sha, H., Yang, R., Yun, Y., & Lu, H. (2017). Deep-learning-based drug–target interaction prediction. Journal of Proteome Research, 16(4), 1401–1409. https://doi.org/10.1021/acs.jproteome.6b00618
Whang, S. E., & Lee, J. G. (2020). Data collection and quality challenges for deep learning. Proceedings of the VLDB Endowment, 13(12), 3429-3432. https://doi.org/10.14778/3415478.3415562
Wheeler, M. W., Lim, S., House, J. S., Shockley, K. R., Bailer, A. J., Fostel, J., ... & Motsinger-Reif, A. A. (2023). ToxicR: A computational platform in R for computational toxicology and dose–response analyses. Computational Toxicology, 25, 100259. https://doi.org/10.1016/j.comtox.2022.100259
Xu, M., Yang, H., Liu, G., Tang, Y., & Li, W. (2022). In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches. Journal of Applied Toxicology, 42(11), 1766-1776. https://doi.org/10.1002/jat.4354
Xu, Y., Chou, C.-H., Han, N., Pei, J., & Lai, L. (2023). Graph Kernel Learning for Predictive Toxicity Models. In Machine Learning and Deep Learning in Computational Toxicology (pp. 159–182). Springer. https://doi.org/10.1007/978-3-031-20730-3_6
Xue, Y., Li, H., Ung, C. Y., Yap, C. W., & Chen, Y. Z. (2006). Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Chemical research in toxicology, 19(8), 1030-1039. https://doi.org/10.1021/tx0600550
Yang, P., Henle, E. A., Fern, X. Z., & Simon, C. M. (2022). Classifying the toxicity of pesticides to honey bees via support vector machines with random walk graph kernels. The Journal of Chemical Physics, 157(3). https://doi.org/10.1063/5.0090573
Yu, X. (2021). Support vector machine-based model for toxicity of organic compounds against fish. Regulatory Toxicology and Pharmacology, 123, 104942. https://doi.org/10.1016/j.yrtph.2021.104942
Yu, X., & Zeng, Q. (2022). Random forest algorithm-based classification model of pesticide aquatic toxicity to fishes. Aquatic Toxicology, 251, 106265. https://doi.org/10.1016/j.aquatox.2022.106265
Yuan, Q., Wei, Z., Guan, X., Jiang, M., Wang, S., Zhang, S., & Li, Z. (2019). Toxicity prediction method based on multi-channel convolutional neural network. Molecules, 24(18), 3383. https://doi.org/10.3390/molecules24183383
Zeidi, A., Rezaei, M. R., Sayadi, M. H., Gholamhosseini, A., & Banaee, M. (2022). Evaluation of polyethylene microplastic bio-accumulation in hepatopancreas, intestine and hemolymph of freshwater crayfish, Astacus leptodactylus. International Journal of Aquatic Biology, 10(4), 273–279. https://doi.org/10.22034/ijab.v10i4.1661
Zeidi, A., Rezaei, M., Sayadi, M. H., Gholamhoseini, A., & Banaee, M. (2023). The effect of microplastics and copper metal on different hemocytes in freshwater crayfish Astacus leptodactylus. Aquaculture Sciences, 11(1), 31–41.
Zhang, H., Ren, J. X., Kang, Y. L., Bo, P., Liang, J. Y., Ding, L., ... & Zhang, J. (2017). Development of novel in silico model for developmental toxicity assessment by using naïve Bayes classifier method. Reproductive Toxicology, 71, 8-15. https://doi.org/10.1016/j.reprotox.2017.04.005
Zhang, Y., Zheng, W., Lin, H., Wang, J., Yang, Z., & Dumontier, M. (2018). Drug–drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths. Bioinformatics, 34(5), 828-835. https://doi.org/10.1093/bioinformatics/btx659
Zhu, J., Sun, J., Jia, L., Xu, L., Cai, Y., Chen, Y., & Jin, J. (2023). Machine Learning‐Enabled Virtual Screening with Multiple Protein Structures toward the Discovery of Novel JAK3 Inhibitors: Integration of Molecular Docking, Pharmacophore, and Naïve Bayesian Classification. Advanced Theory and Simulations, 2200835. https://doi.org/10.1002/adts.202200835