Enhancement of Bio Oil Yield and Aromatic Compounds Selectivity via Co-Pyrolysis of Paulownia Wood and Polypropylene Waste Blend on a Horizontal Reactor

Document Type : Original Research Paper


1 School of Chemistry, Alborz Campus , University of Tehran, Tehran, Iran

2 School of Chemistry, College of Science, University of Tehran, Tehran, Iran


Thermochemical conversion of biomass and petrochemical wastes blend is an excellent method to produce valuable fuels and reduce environmental pollution. Bio-oil production via blending of paulownia wood and polypropylene plastic was investigated in a fixed bed horizontal reactor at different reaction temperatures and different Polymer/ Biomass weight ratios. Biomass showed the highest amount of bio-oil production (52.8 wt.%) at 500°C. The results show that with increase in temperature, the production of lighter products (with lower carbon number) has increased. Co-pyrolysis on a horizontal reactor showed positive synergy for the production of liquid and gaseous products. Bio-oil production increased to 61.03 wt.% and the relative oxygen content of the liquid products decreased. In co-pyrolysis with the ratio of 60:40 of PAW: PP, aromatic compounds with 35% by weight constitute the highest amount of liquid product and production of furans and aldehyde/ketones reduced. While this number is equal to 8% for blend of 5% PP and 95% PAW.


Main Subjects

Abbas-Abadi, M. S., Van Geem, K. M., Fathi, M., Bazgir, H., & Ghadiri, M. (2021). The pyrolysis of oak with polyethylene, polypropylene and polystyrene using fixed bed and stirred reactors and TGA instrument. Energy, 232, 121085. 
Alam, M., Bhavanam, A., Jana, A., & Peela, N. R. (2020). Co-pyrolysis of bamboo sawdust and plastic: synergistic effects and kinetics. Renewable Energy, 149, 1133-1145. 
Alhazmi, H., Almansour, F. H., & Aldhafeeri, Z. (2021). Plastic waste management: A review of existing life cycle assessment studies. Sustainability, 13(10), 5340. 
Anandaram, H., Srivastava, B. K., Vijayakumar, B., Madhu, P., Depoures, M. V., Patil, P. P., . . . Prabhakar, S. (2022). Co-pyrolysis characteristics and synergistic interaction of waste polyethylene terephthalate and woody biomass towards bio-oil production. Journal of Chemistry, 2022. 
Anene, A. F., Fredriksen, S. B., Sætre, K. A., & Tokheim, L.-A. (2018). Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustainability, 10(11), 3979. 
Ansari, M. H., Jafarian, S., Tavasoli, A., Karimi, A., & Rashidi, M. (2014). Hydrogen rich gas production via nano-catalytic pyrolysis of bagasse in a dual bed reactor. Journal of Natural Gas Science and Engineering, 19, 279-286. 
Balaghi Inaloo, E., & Saidi, M. (2022). Biofuel production from olive pomace via thermal and catalytic pyrolysis using an RFCC catalyst. Biofuels, Bioproducts and Biorefining, 16(6), 1667-1681. 
Balaghi Inaloo, E., Saidi, M., & Taheri Najafabadi, A. (2022). Valuable Biofuel Production via Pyrolysis Process of Olive Pomace over Alkali and Transition Metal Oxides Catalysts Supported on Activated Biochar. ChemistrySelect, 7(36), e202200789. 
Baykara, S. Z. (2018). Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy, 43(23), 10605-10614. 
Bridgwater, A. (2013). Fast pyrolysis of biomass for the production of liquids Biomass combustion science, technology and engineering (pp. 130-171): Elsevier.
Chagas, B. M., Dorado, C., Serapiglia, M. J., Mullen, C. A., Boateng, A. A., Melo, M. A., & Ataíde, C. H. (2016). Catalytic pyrolysis-GC/MS of Spirulina: Evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel, 179, 124-134. 
Chaihad, N., Karnjanakom, S., Abudula, A., & Guan, G. (2022). Zeolite-based cracking catalysts for bio-oil upgrading: a critical review. Resources Chemicals and Materials. 
Chen, L., Wang, S., Meng, H., Wu, Z., & Zhao, J. (2017). Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste. Applied Thermal Engineering, 111, 834-846. 
Chen, W., Lu, J., Zhang, C., Xie, Y., Wang, Y., Wang, J., & Zhang, R. (2020). Aromatic hydrocarbons production and synergistic effect of plastics and biomass via one-pot catalytic co-hydropyrolysis on HZSM-5. Journal of Analytical and Applied Pyrolysis, 147, 104800. 
Daioglou, V., Doelman, J. C., Stehfest, E., Müller, C., Wicke, B., Faaij, A., & Van Vuuren, D. P. (2017). Greenhouse gas emission curves for advanced biofuel supply chains. Nature Climate Change, 7(12), 920-924. 
Faravelli, T., Pinciroli, M., Pisano, F., Bozzano, G., Dente, M., & Ranzi, E. (2001). Thermal degradation of polystyrene. Journal of Analytical and Applied Pyrolysis, 60(1), 103-121. 
Gala, A., Catalán-Martínez, D., Guerrero, M., & Serra, J. M. (2021). Simulation-assisted design of a catalytic hydrogenation reactor for plastic pyrolysis fuels. Fuel, 287, 119400. 
Gala, A., Guerrero, M., Guirao, B., Domine, M. E., & Serra, J. M. (2020). Characterization and distillation of pyrolysis liquids coming from polyolefins segregated of MSW for their use as automotive diesel fuel. Energy & Fuels, 34(5), 5969-5982. 
Gin, A., Hassan, H., Ahmad, M., Hameed, B., & Din, A. M. (2021). Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: The influence of technical and reaction kinetic parameters. Arabian Journal of Chemistry, 14(4), 103035. 
Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of analytical and applied pyrolysis, 129, 134-149. 
Hatefirad, P., & Tavasoli, A. (2021). Effect of acid treatment and Na2CO3 as a catalyst on the quality and quantity of bio-products derived from the pyrolysis of granular bacteria biomass. Fuel, 295, 120585. 
He, Q., Guo, Q., Ding, L., Wei, J., & Yu, G. (2019). Rapid co-pyrolysis of lignite and biomass blends: Analysis of synergy and gasification reactivity of residue char. Journal of Analytical and Applied Pyrolysis, 143, 104688. 
He, S., Klein, F. G. H., Kramer, T. S., Chandel, A., Tegudeer, Z., Heeres, A., & Heeres, H. J. (2021). Catalytic conversion of free fatty acids to bio-based aromatics: a model investigation using oleic acid and an H-ZSM-5/Al2O3 catalyst. ACS sustainable chemistry & engineering, 9(3), 1128-1141. 
Holma, A., Koponen, K., Antikainen, R., Lardon, L., Leskinen, P., & Roux, P. (2013). Current limits of life cycle assessment framework in evaluating environmental sustainability–case of two evolving biofuel technologies. Journal of cleaner production, 54, 215-228. 
Idumah, C. I., & Nwuzor, I. C. (2019). Novel trends in plastic waste management. SN Applied Sciences, 1, 1-14. 
Jafarian, S., & Tavasoli, A. (2018). A comparative study on the quality of bioproducts derived from catalytic pyrolysis of green microalgae Spirulina (Arthrospira) plantensis over transition metals supported on HMS-ZSM5 composite. International Journal of Hydrogen Energy, 43(43), 19902-19917. 
Jakubowski, M. (2022). Cultivation potential and uses of Paulownia wood: A review. Forests, 13(5), 668. 
Jung, Y.-j., Kim, B.-S., Jeong, B., Kim, H.-D., Won, J. M., Cha, K., & Cha, J.-S. (2023). Thermal regeneration characteristics of titanium isopropoxide-modified TiO2 for the removal of environmentally hazardous NO x in iron ore sintering process. Korean Journal of Chemical Engineering, 1-8. 
Khodafarin, R., Tavasoli, A., & Rashidi, A. (2020). Single-step conversion of sugarcane bagasse to biofuel over Mo-supported graphene oxide nanocatalyst. Biomass Conversion and Biorefinery, 1-12. 
Kim, J. W., Lee, H. W., Lee, I.-G., Jeon, J.-K., Ryu, C., Park, S. H., . . . Park, Y.-K. (2014). Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood. Renewable energy, 65, 41-48. 
Kohansal, K., Tavasoli, A., & Bozorg, A. (2019). Using a hybrid-like supported catalyst to improve green fuel production through hydrothermal liquefaction of Scenedesmus obliquus microalgae. Bioresource technology, 277, 136-147. 
Liu, C., Wang, H., Karim, A. M., Sun, J., & Wang, Y. (2014). Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 43(22), 7594-7623. 
Liu, X., Burra, K. G., Wang, Z., Li, J., Che, D., & Gupta, A. K. (2020). On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene. Applied Energy, 279, 115811. 
Lu, P., Huang, Q., Bourtsalas, A. T., Chi, Y., & Yan, J. (2018). Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride. Fuel, 230, 359-367. 
Mahari, W. A. W., Chong, C. T., Lam, W. H., Anuar, T. N. S. T., Ma, N. L., Ibrahim, M. D., & Lam, S. S. (2018). Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Conversion and Management, 171, 1292-1301. 
Mahari, W. A. W., Kee, S. H., Foong, S. Y., Amelia, T. S. M., Bhubalan, K., Man, M., . . . Lam, S. S. (2022). Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation. Renewable and Sustainable Energy Reviews, 153, 111790. 
Miandad, R., Barakat, M., Aburiazaiza, A. S., Rehan, M., & Nizami, A. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838. 
Miandad, R., Barakat, M., Rehan, M., Aburiazaiza, A., Ismail, I., & Nizami, A. (2017). Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management, 69, 66-78. 
Muneer, B., Zeeshan, M., Qaisar, S., Razzaq, M., & Iftikhar, H. (2019). Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. Journal of Cleaner Production, 237, 117762. 
Nagata, T., DuVal, A., Schmull, M., Tchernaja, T. A., & Crane, P. R. (2013). Paulownia tomentosa: A Chinese plant in Japan. Curtis’s Botanical Magazine, 30(3), 261-274. 
Nejati, B., Adami, P., Bozorg, A., Tavasoli, A., & Mirzahosseini, A. H. (2020). Catalytic pyrolysis and bio-products upgrading derived from Chlorella vulgaris over its biochar and activated biochar-supported Fe catalysts. Journal of Analytical and Applied Pyrolysis, 152, 104799. 
Nguyen, L. T. T., Poinern, G. E. J., Le, H. T., Nguyen, T. A., Tran, C. M., & Jiang, Z. T. (2021). A LaFeO3 supported natural‐clay‐mineral catalyst for efficient pyrolysis of polypropylene plastic material. Asia‐Pacific Journal of Chemical Engineering, 16(5), e2695. 
Nikkhah, H., Tavasoli, A., & Jafarian, S. (2020). Investigating the influence of acid washing pretreatment and Zn/activated biochar catalyst on thermal conversion of Cladophora glomerata to value-added bio-products. Energy Conversion and Management, 225, 113392. 
Nkosi, N., Muzenda, E., Gorimbo, J., & Belaid, M. (2021). Developments in waste tyre thermochemical conversion processes: gasification, pyrolysis and liquefaction. RSC advances, 11(20), 11844-11871. 
Park, C., & Lee, J. (2021). Pyrolysis of polypropylene for production of fuel‐range products: effect of molecular weight of polypropylene. International Journal of Energy Research, 45(9), 13088-13097. 
Pirbazari, S., Norouzi, O., Kohansal, K., & Tavasoli, A. (2019). Experimental studies on high-quality bio-oil production via pyrolysis of Azolla by the use of a three metallic/modified pyrochar catalyst. Bioresource technology, 291, 121802. 
Rafey, A., & Siddiqui, F. Z. (2023). A review of plastic waste management in India–challenges and opportunities. International Journal of Environmental Analytical Chemistry, 103(16), 3971-3987. 
Resende, F. L. (2016). Recent advances on fast hydropyrolysis of biomass. Catalysis Today, 269, 148-155. 
Rodríguez-Seoane, P., Díaz-Reinoso, B., Moure, A., & Domínguez, H. (2020). Potential of Paulownia sp. for biorefinery. Industrial Crops and Products, 155, 112739. 
Rotliwala, Y., & Parikh, P. (2012). Thermal co-processing of high density polyethylene with coal, fly ashes, and biomass: characterization of liquid products. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34(11), 1055-1066. 
Rutkowski, P. (2012). Chemical composition of bio-oil produced by co-pyrolysis of biopolymer/polypropylene mixtures with K2CO3 and ZnCl2 addition. Journal of Analytical and Applied Pyrolysis, 95, 38-47. 
Ryu, H. W., Kim, D. H., Jae, J., Lam, S. S., Park, E. D., & Park, Y.-K. (2020). Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresource technology, 310, 123473. 
Sajdak, M., & Muzyka, R. (2014). Use of plastic waste as a fuel in the co-pyrolysis of biomass. Part I: The effect of the addition of plastic waste on the process and products. Journal of Analytical and Applied Pyrolysis, 107, 267-275. 
Santillan‐Jimenez, E., & Crocker, M. (2012). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation. Journal of Chemical Technology & Biotechnology, 87(8), 1041-1050. 
Seifali Abbas-Abadi, M., & Nekoomanesh Haghighi, M. (2017). The consideration of different effective zeolite based catalysts and heating rate on the pyrolysis of Styrene Butadiene Rubber (SBR) in a stirred reactor. Energy & Fuels, 31(11), 12358-12363. 
Sharuddin, S., Abnisa, F., Daud, W., & Aroua, M. (2018). Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. Paper presented at the IOP Conference Series: Materials Science and Engineering.
Shaw, C. (2013). Choosing a dangerous limit for climate change: Public representations of the decision making process. Global Environmental Change, 23(2), 563-571. 
Singh, R., Ruj, B., Sadhukhan, A., Gupta, P., & Tigga, V. (2020). Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics. Fuel, 262, 116539. 
Solarte-Toro, J. C., González-Aguirre, J. A., Giraldo, J. A. P., & Alzate, C. A. C. (2021). Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renewable and Sustainable Energy Reviews, 136, 110376. 
Sophonrat, N., Sandström, L., Zaini, I. N., & Yang, W. (2018). Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates. Applied Energy, 229, 314-325. 
Staples, M. D., Malina, R., & Barrett, S. R. (2017). The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nature Energy, 2(2), 1-8. 
Stummann, M. Z., Høj, M., Gabrielsen, J., Clausen, L. R., Jensen, P. A., & Jensen, A. D. (2021). A perspective on catalytic hydropyrolysis of biomass. Renewable and Sustainable Energy Reviews, 143, 110960. 
Su, J., Fang, C., Yang, M., You, C., Lin, Q., Zhou, X., & Li, H. (2019). Catalytic pyrolysis of waste packaging polyethylene using AlCl3-NaCl eutectic salt as catalyst. Journal of Analytical and Applied Pyrolysis, 139, 274-281. 
Taghavi, S., Norouzi, O., Tavasoli, A., Di Maria, F., Signoretto, M., Menegazzo, F., & Di Michele, A. (2018). Catalytic conversion of Venice lagoon brown marine algae for producing hydrogen-rich gas and valuable biochemical using algal biochar and Ni/SBA-15 catalyst. International Journal of Hydrogen Energy, 43(43), 19918-19929. 
Thahir, R., Altway, A., & Juliastuti, S. R. (2019). Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy reports, 5, 70-77. 
Van Emmerik, T., Kieu-Le, T.-C., Loozen, M., Van Oeveren, K., Strady, E., Bui, X.-T., . . . Nguyen, P.-D. (2018). A methodology to characterize riverine macroplastic emission into the ocean. Frontiers in Marine Science, 5, 372. 
Vargas Santillán, A., Farias Sanchez, J., Pineda Pimentel, M., & Castro Montoya, A. (2016). Olefins and ethanol from polyolefins: analysis of potential chemical recycling of poly (ethylene) Mexican case. International Journal of Chemical Reactor Engineering, 14(6), 1289-1300. 
Vichaphund, S., Sricharoenchaikul, V., & Atong, D. (2017). Industrial waste derived CaO-based catalysts for upgrading volatiles during pyrolysis of Jatropha residues. Journal of Analytical and Applied Pyrolysis, 124, 568-575. 
Wang, L., Lei, H., Liu, J., & Bu, Q. (2018). Thermal decomposition behavior and kinetics for pyrolysis and catalytic pyrolysis of Douglas fir. RSC advances, 8(4), 2196-2202. 
Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in energy and combustion science, 62, 33-86. 
Yu, J., Sun, L., Ma, C., Qiao, Y., & Yao, H. (2016). Thermal degradation of PVC: A review. Waste management, 48, 300-314. 
Yuan, H., Fan, H., Shan, R., He, M., Gu, J., & Chen, Y. (2018). Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios. Energy conversion and management, 157, 517-526. 
Zhai, J., Burke, I. T., & Stewart, D. I. (2022). Potential reuse options for biomass combustion ash as affected by the persistent organic pollutants (POPs) content. Journal of Hazardous Materials Advances, 5, 100038. 
Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., & Zheng, Z. (2018). Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis, 133, 185-197.