The Effect of Magnetic Treatment on some Physico-Chemical Properties of Landfill Leachate (Wadi Al-Hada)

Document Type : Original Research Paper

Authors

1 Department of agricultural mechanization, Faculty of technical Engineering, Tartous University, Tartous, Syria

2 Department of Food Technology, Faculty of Technical Engineering, Tartous University, Tartous, Syria

Abstract

The landfill leachate contains high concentrations of organic pollutants that can be biological and resistant to it. Therefore, the resulting leachate must be treated from the healthy landfill before disposing of it in the environment. In this research, the technique of improved magnetic therapy was tested to improve some physicochemical properties of landfill leachate. Where a laboratory model was designed to evaluate the performance of the magnetic field with different strengths on the treatment of the leachate field collected from the Wadi al-Hadda landfill in Tartous Governorate-Syria. By the increasing in magnetic field strength from 272 to 678 µT, the removal efficacy of BOD and COD increased from 9 and 19% to 36.7 and 54.7%, respectively, and, the removal efficacy of NO3-N and NO3 increased from 6 and 17% to 24.6 and 46.8%, respectively. Electric conductivity (EC) values also decreased due to the use of magnetic field.

Keywords

Main Subjects


Abdelzaher, M. A. (2022). Performance and hydration characteristic of dark white evolution (DWE) cement composites blended with clay brick powder. Egyptian Journal of Chemistry, 65(8), 419–427. 
Al-wasify, R. S., Ali, M. N., & Hamed, S. R. (2018). Application of different magnetic intensities for the treatment of landfill leachate in Egypt Application of different magnetic intensities for the treatment of landfill leachate in Egypt. Cogent Engineering, 5(1), 1–13.
Balboul, B. A. A., Abdelzaher, M. A., Hamouda, A. S., & Zaki, A. H. (2019). Nano titania combined with micro silica reinforced limestone cement: Physico-mechanical Investigation. Egyptian Journal of Chemistry, 62(6), 1505–1515. 
Bandala, E. R., Liu, A., Wijesiri, B., Zeidman, A. B., & Goonetilleke, A. (2021). Emerging materials and technologies for landfill leachate treatment: A critical review. Environmental Pollution, 291(June), 118133. 
Bernat, K., Zaborowska, M., Zielińska, M., Wojnowska-Baryła, I., & Ignalewski, W. (2021). Biological treatment of leachate from stabilization of biodegradable municipal solid waste in a sequencing batch biofilm reactor. International Journal of Environmental Science and Technology, 18(5), 1047–1060. 
Canziani, R., Emondi, V., Garavaglia, M., Malpei, F., Pasinetti, E., & Buttiglieri, G. (2006). Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. Journal of Membrane Science, 286(1–2), 202–212. 
Chou, Y. C., Lo, S. L., Kuo, J., & Yeh, C. J. (2013). Derivative mechanisms of organic acids in microwave oxidation of landfill leachate. Journal of Hazardous Materials, 254–255(1), 293–300. 
Duchin, F., & Levine, S. H. (2002). Magnetic-field processing of industrial effluents. Chemical and Petroleum Engineering, 38(3/4), 236–239. 
Elkhouly, H. I., Abdelzaher, M. A., & El-Kattan, I. M. (2022). Experimental and Modeling Investigation of Physicomechanical Properties and Firing Resistivity of Cement Pastes Incorporation of Micro-Date Seed Waste. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(4), 2809–2821. 
Hoornweg, D., & Bhada-Tata, P. (2012). What a Waste: A Global Review of Solid Waste Management. Urban Development Series; Knowledge Papers no.15, World Bank, 116. 
Lychagin, N. I. (1975). Changing properties of magnetized water., 17(2), 229–233. Russian Physics Journal, 17(2), 229–233.
Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s Socio-economic Drought: Challenges of a Water-Bankrupt Nation. Iranian Studies, 49(6), 997–1016. 
Maheshwari, B. L., & Grewal, H. S. (2009). Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural Water Management, 96(8), 1229–1236. 
Mohammed, M., Alkhazan, K., Ali, A., & Saddiq, N. (2010). The effect of magnetic field on the physical, chemical and microbiological properties of the lake water in Saudi Arabia. Journal of Evolutionary Biology Research, 2(1), 7–14. 
Mokhtarani, N., Khodabakhshi, S., & Ayati, B. (2016). Optimization of photocatalytic post-treatment of composting leachate using UV/TiO2. Desalination and Water Treatment, 57(47), 22232–22243. 
Nanayakkara, N., Koralage, A., Meegoda, C., & Kariyawasam, S. (2019). Removing nitrogenous compounds from landfill leachate using electrochemical techniques. Environmental Engineering Research, 24(2), 339–346. 
Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12. 
Othman, F., Sohaili, J., Fauzia, Z., & Ni’am, M. F. (2009). Influence of magnetic treatment on the improvement of landfill leachate treatment. International Journal of Environment and Waste Management, 4(3–4), 433–444. 
Pazoki, M., Abdoli, M. A., Karbassi, A., Mehrdadi, N., & Yaghmaeian, K. (2014). Attenuation of municipal landfill leachate through land treatment. International Journal of Environmental Health Science & Engineering, 1(12:12), 1–8. 
Ranjbari, A., & Mokhtarani, N. (2018). Post treatment of composting leachate using ZnO nanoparticles immobilized on moving media. Applied Catalysis B: Environmental, 220, 211–221. 
Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. 
Sa’at, S. K. (2006). Subsurface flow and free water surface flow constructed wetland with magnetic field for leachate treatment (master thesis). Faculty of Civil Engineering Universiti Teknologi Malaysia.
Silva, A. C., Dezotti, M., & Sant’Anna, G. L. (2004). Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55(2), 207–214. 
Soubh, A. M. (2020). Using Ozone with Hydrogen Peroxide as Advanced Oxidation Treatment of Raw Leachate Landfill, 5(October), 530–539.
Soubh, A. M., Abdoli, M. A., & Ahmad, L. A. (2021). Optimizing the removal of methylene blue from aqueous solutions using persulfate activated with nanoscale zero valent iron ( nZVI ) supported by reduced expanded graphene oxide ( rEGO ). Environmental Health Engineering and Management Journal, 8(1), 2–11. 
Soubh, A. M., Baghdadi, M., Abdoli, M. A., & Aminzadeh, B. (2018a). Activation of Persulfate Using an Industrial Iron-Rich Sludge as an Efficient Nanocatalyst for Landfill. Catalysts, 8(5), 218. 
Soubh, A. M., Baghdadi, M., Abdoli, M. A., & Aminzadeh, B. (2018b). Zero-valent iron nano fi bers ( ZVINFs ) immobilized on the surface of reduced ultra-large graphene oxide ( rULGO ) as a persulfate activator for treatment of land fi ll leachate. Journal of Environmental Chemical Engineering, 6(5), 6568–6579. 
Soubh, A. M., Baghdadi, M., Abdoli, M. A., & Aminzadeh, B. (2019). Assessment of Converter Sludge from Esfahan Steel Company as a Persulfate Nano-Activator for Permeable Reactive Barriers ( Prbs ) in Landfill Leachate Treatment. Pollution, 5(2), 395–409. 
Soubh, A., & Mokhtarani, N. (2016). The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. Rsc Advances, 6(80), 76113–76122. 
Teng, C., Zhou, K., Peng, C., & Chen, W. (2021). Characterization and treatment of landfill leachate: A review. Water Research, 203(March), 117525. 
To, P. K., Ma, H. T., Nguyen Hoang, L., & Nguyen, T. T. (2020). Nitrate Removal from Waste-Water Using Silica Nanoparticles. Journal of Chemistry, 2020, 1–6. 
Tyrrel, S. F., Leeds-Harrison, P. B., & Harrison, K. S. (2002). Removal of ammoniacal nitrogen from landfill leachate by irrigation onto vegetated treatment planes. Water Research, 36(1), 291–299. 
Wijekoon, P., Koliyabandara, P. A., Cooray, A. T., Lam, S. S., Athapattu, B. C. L., & Vithanage, M. (2022). Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials, 421(February 2021), 126627. 
Zhang, X., Gu, L., Ye, C., Zhu, N., Miao, C., & Liu, S. (2014). Nitrate removal from landfill leachate by zerovalent iron (ZVI). Desalination and Water Treatment, 52(37–39), 7270–7276.