Role of Methanotrophs in Methane Oxidation from Municipal Solid Waste Dumpsites in Tropical Countries

Document Type : Review Paper

Authors

1 CSIR-National Environmental Engineering Research Institute, Nagpur -440020, India

2 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad -201002, India

Abstract

Municipal Solid Waste (MSW) dumpsites are one of the major source of methane (CH4) emissions due anaerobic degradation of organic matter content in the waste. Control technologies are available to reduce these emissions, but they are costly and their application on existing sites is complex. Moreover, tropical climate is responsible for rapid degradation of organic matter in open dumps leading to substantial CH4 emissions mainly due to hot and humid conditions amongst other factors. Methanotrophs are bacteria capable of oxidizing CH4 into carbon dioxide (CO2) by virtue of methane monooxygenase enzyme. Various cover materials can be utilized to enhance methane oxidation (MO) ability of these organisms by providing favorable conditions thus converting methane from unmanaged dumpsites into CO2 which has lower global warming potential. Hence their application shows great potential for contributing towards meeting the greenhouse gas (GHG) reduction goals. This review focuses on the attempts to attenuate CH4 emissions by different biocover systems and the current scenario while giving special emphasis to tropical conditions.

Keywords

Main Subjects


Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003
Abdelzaher, M. A. (2022). Performance and hydration characteristic of dark white evolution (DWE) cement composites blended with clay brick powder. Egyptian Journal of Chemistry, 65(8), 419–427. https://doi.org/10.21608/ejchem.2022.113836.5169
Abushammala, M. F.M., Basri, N. E. A., Kadhum, A. A. H., Basri, H., El-Shafie, A. H., & Sharifah Mastura, S. A. (2014). Evaluation of methane generation rate and potential from selected landfills in Malaysia. International Journal of Environmental Science and Technology, 11(2), 377–384. https://doi.org/10.1007/s13762-013-0197-0
Abushammala, Mohammed F. M., Basri, N. E. A., & Younes, M. K. (2016). Seasonal Variation of Landfill Methane and Carbon Dioxide Emissions in a Tropical Climate. International Journal of Environmental Science and Development, 7(8), 586–590. https://doi.org/10.18178/ijesd.2016.7.8.844
Adeleke, O. A., Akinlabi, S. A., Jen, T. C., & Dunmade, I. (2021). An overview of factors affecting the rate of generation and Physical Composition of Municipal Solid Waste. IOP Conference Series: Materials Science and Engineering, 1107(1), 012096. https://doi.org/10.1088/1757-899x/1107/1/012096
Alam, A., Chaudhry, M. N., Ahmad, S. R., Ullah, R., Batool, S. A., Butt, T. E., … Mahmood, A. (2022). Application of Landgem Mathematical Model for the Estimation of Gas Emissions From Contaminated Sites. a Case Study of a Dumping Site in Lahore, Pakistan. Environment Protection Engineering, 48(1), 69–81. https://doi.org/10.37190/epe220105
Alshareedah, A., & Sallis, P. (2016). Methanotrophic Oxygen Dependency and Availability for Sustained Oxidation. International Journal of Waste Resources, 6(3). https://doi.org/10.4172/2252-5211.1000249
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., … Hamburg, S. P. (2018). Assessment of methane emissions from the U.S. oil and gas supply chain. In Science (Vol. 361). https://doi.org/10.1126/science.aar7204
Amaral, J. A., & Knowles, R. (1995). Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiology Letters, 126(3), 215–220. https://doi.org/10.1016/0378-1097(95)00012-T
Awala, S. I., Bellosillo, L. A., Gwak, J.-H., Nguyen, N.-L., Kim, S.-J., Lee, B.-H., & Rhee, S.-K. (2020). Methylococcus geothermalis sp. nov., a methanotroph isolated from a geothermal field  in the Republic of Korea. International Journal of Systematic and Evolutionary Microbiology, 70(10), 5520–5530. https://doi.org/10.1099/ijsem.0.004442
Bajwa, T. M., Fall, M., & Alshawmar, F. (2022). Experimental Characterization of the Engineering Properties of Landfill Compost-Biocover. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094276
Balcombe, P., Speirs, J. F., Brandon, N. P., & Hawkes, A. D. (2018). Methane emissions: choosing the right climate metric and time horizon. Environmental Science: Processes and Impacts, 20(10), 1323–1339. https://doi.org/10.1039/c8em00414e
Barlaz, M. A., Green, R. B., Chanton, J. P., Goldsmith, C. D., & Hater, G. R. (2004). Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environmental Science and Technology, 38(18), 4891–4899. https://doi.org/10.1021/es049605b
Barragán-Escandón, A., Ruiz, J. M. O., Tigre, J. D. C., & Zalamea-León, E. F. (2020). Assessment of power generation using biogas from landfills in an equatorial tropical context. Sustainability (Switzerland), 12(7), 1–18. https://doi.org/10.3390/su12072669
Boeckx, P., Van Cleemput, O., & Villaralvo, I. (1996). Methane emission from a landfill and the methane oxidising capacity of its covering soil. Soil Biology and Biochemistry, 28(10–11), 1397–1405. https://doi.org/10.1016/S0038-0717(96)00147-2
Boerboom, R., Vatamanu, M., & Zegers, D. (2010). Dramatic reduction in emissions of methane from landfills in the Netherlands: Additional measures considered. Journal of Integrative Environmental Sciences, 7(SUPPL. 1), 167–174. https://doi.org/10.1080/19438151003621326
Bogner, J. E., Spokas, K. A., & Burton, E. A. (1997). Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole-landfill oxidation experiment, and modeling of Net CH4 emissions. Environmental Science and Technology, 31(9), 2504–2514. https://doi.org/10.1021/es960909a
Börjesson, G., Sundh, I., & Svensson, B. (2004). Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiology Ecology, 48(3), 305–312. https://doi.org/10.1016/j.femsec.2004.02.006
Brandt, E. M. F., Duarte, F. V., Vieira, J. P. R., Melo, V. M., Souza, C. L., Araújo, J. C., & Chernicharo, C. A. L. (2016). The use of novel packing material for improving methane oxidation in biofilters. Journal of Environmental Management, 182, 412–420. https://doi.org/10.1016/j.jenvman.2016.07.075
Cai, B., Lou, Z., Wang, J., Geng, Y., & Sarkis, J. (2018). CH 4 mitigation potentials from China landfills and related environmental co-benefits. 1–8.
Cai, Z., & Yan, X. (1999). Kinetic model for methane oxidation by paddy soil as a€ected.pdf. 31, 715–725.
Cébron, A., Bodrossy, L., Chen, Y., Singer, A. C., Thompson, I. P., Prosser, J. I., & Murrell, J. C. (2007). Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiology Ecology, 62(1), 12–23. https://doi.org/10.1111/j.1574-6941.2007.00368.x
Chai, X., Tonjes, D. J., & Mahajan, D. (2016). Methane emissions as energy reservoir: Context, scope, causes and mitigation strategies. Progress in Energy and Combustion Science, 56, 33–70. https://doi.org/10.1016/j.pecs.2016.05.001
Chandrasekaran, R., & Busetty, S. (2022). Estimating the methane emissions and energy potential from Trichy and Thanjavur dumpsite by LandGEM model. Environmental Science and Pollution Research, (0123456789). https://doi.org/10.1007/s11356-022-19063-8
Chang, C. Y., Tung, H. H., Tseng, I. C., Wu, J. H., Liu, Y. F., & Lin, H. M. (2010). Dynamics of methanotrophic communities in tropical alkaline landfill upland soil. Applied Soil Ecology, 46(2), 192–199. https://doi.org/10.1016/j.apsoil.2010.08.009
Chanton, J., & Liptay, K. (2000). Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Global Biogeochemical Cycles, 14(1), 51–60. https://doi.org/10.1029/1999GB900087
Chi, Z. F., Lu, W. J., & Wang, H. T. (2015). Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of southern China. Journal of Microbiology and Biotechnology, 25(4), 423–430. https://doi.org/10.4014/jmb.1408.08055
Chiemchaisri, C., Chiemchaisri, W., Kumar, S., & Hettiaratchi, J. P. A. (2007). Solid waste characteristics and their relationship to gas production in tropical landfill. Environmental Monitoring and Assessment, 135(1–3), 41–48. https://doi.org/10.1007/s10661-007-9706-2
CHIEMCHAISRI, C., CHIEMCHAISRI, W., KUMAR, S., & WICRAMARACHCHI, P. N. (2012). Reduction of Methane Emission From Landfill Through Microbial Activities in Cover Soil: A Brief Review. Critical Reviews in Environmental Science and Technology, 42(4), 412–434. https://doi.org/10.1080/10643389.2010.520233
Chiemchaisri, W., Visvanathan, C., & Wu, J. S. (2001). Biological activities of methane oxidation in tropical landfill cover soils. Journal of Solid Waste Technology and Management.
Christophersen, M., Linderod, L., Jensen, P. E., & Kjeldsen, P. (2000). Methane oxidation at low temperatures in soil exposed to landfill gas. Journal of Environmental Quality, 29(6), 1989–1997. https://doi.org/10.2134/jeq2000.00472425002900060036x
Cicerone, R. J., & Oremland, R. S. (1988). Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles. https://doi.org/10.1029/GB002i004p00299
CPCB. (2021). Annual Report 2020-21 on Implementation of Solid Waste Management Rules , 2016 CENTRAL POLLUTION CONTROL BOARD. 145–287. Retrieved from https://cpcb.nic.in/uploads/plasticwaste/Annual_Report_2019-20_PWM.pdf
Czepiel, P. M., Mosher, B., Crill, P. M., & Harriss, R. C. (1996). Quantifying the effect of oxidation on landfill methane emissions. Journal of Geophysical Research Atmospheres, 101(11), 16721–16729. https://doi.org/10.1029/96jd00222
De Visscher, A., Schippers, M., & Van Cleemput, O. (2001). Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors. Biology and Fertility of Soils, 33(3), 231–237. https://doi.org/10.1007/s003740000313
DISER. (2022). National Inventory Report Volume 2, Australian Government Department of Industry, Science, Energy and Resources. (Vol. 2).
Dlugokencky, E. (2021). Trends in Atmospheric Methane. Retrieved May 16, 2021, from NOAA/GML website: gml.noaa.gov/ccgg/trends_ch4/
dos Muchangos, L. S., & Tokai, A. (2020). Greenhouse gas emission analysis of upgrading from an open dump to a semi-aerobic landfill in Mozambique – the case of Hulene dumpsite. Scientific African, 10, 1–10. https://doi.org/10.1016/j.sciaf.2020.e00638
Duan, Z., Kjeldsen, P., & Scheutz, C. (2022). Efficiency of gas collection systems at Danish landfills and implications for regulations. Waste Management, 139(December 2021), 269–278. https://doi.org/10.1016/j.wasman.2021.12.023
Einola, J. K. M., Kettunen, R. H., & Rintala, J. A. (2007). Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biology and Biochemistry, 39(5), 1156–1164. https://doi.org/10.1016/j.soilbio.2006.12.022
Elkhouly, H. I., Abdelzaher, M. A., & El-kattan, I. M. (2021). Experimental and Modeling Investigation of Physicomechanical Properties and Firing Resistivity of Cement Pastes Incorporation of Micro-Date Seed Experimental and Modeling Investigation of Physicomechanical Properties and Firing Resistivity of Cement Paste. Iranian Journal of Science and Technology, Transactions of Civil Engineering, (November). https://doi.org/10.1007/s40996-021-00760-2
EPA. (2012). Landfill Methane Outreach Program: Basic Information.
EPA. (2020). Landfill Gas Energy Project Data and Landfill Technical Data. Retrieved from https://www.epa.gov/lmop/landfill-gas-energy-project-data-and-landfill-technical-data
EPA. (2022). Basic Information about Landfill Gas. Retrieved from https://www.epa.gov/lmop/basic-information-about-landfill-gas
European suppliers of waste to energy technology. (2018). Methane emissions in the waste sector. The case-study of Germany.
Fernández-Amador, O., Francois, J. F., Oberdabernig, D. A., & Tomberger, P. (2020). The methane footprint of nations: Stylized facts from a global panel dataset. Ecological Economics, 170(September 2019), 106528. https://doi.org/10.1016/j.ecolecon.2019.106528
Gebert, J., & Gröngröft, A. (2006). Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Management, 26(4), 399–407. https://doi.org/10.1016/j.wasman.2005.11.007
Gebert, Julia, Groengroeft, A., & Pfeiffer, E. M. (2011). Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biology and Biochemistry, 43(9), 1759–1767. https://doi.org/10.1016/j.soilbio.2010.07.004
Getahun, T., Gebrehiwot, M., Ambelu, A., Van Gerven, T., & Van Der Bruggen, B. (2014). The potential of biogas production from municipal solid waste in a tropical climate. Environmental Monitoring and Assessment, 186(7), 4637–4646. https://doi.org/10.1007/s10661-014-3727-4
Godfrey, L., Tawfic Ahmed, M., Giday Gebremedhin, K., H.Y. Katima, J., Oelofse, S., Osibanjo, O., … H. Yonli, A. (2020). Solid Waste Management in Africa: Governance Failure or Development Opportunity? Regional Development in Africa, 1–14. https://doi.org/10.5772/intechopen.86974
Goldsmith, C. D., Chanton, J., Abichou, T., Swan, N., Green, R., & Hater, G. (2012). Methane emissions from 20 landfills across the United States using vertical radial plume mapping. Journal of the Air and Waste Management Association, 62(2), 183–197. https://doi.org/10.1080/10473289.2011.639480
Gollapalli, M., & Kota, S. H. (2018). Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models. Environmental Pollution, 234, 174–180. https://doi.org/10.1016/j.envpol.2017.11.064
Gonzalez-Valencia, R., Magana-Rodriguez, F., Martinez-Cruz, K., Fochesatto, G. J., & Thalasso, F. (2021). Spatial and temporal distribution of methane emissions from a covered landfill equipped with a gas recollection system. Waste Management, 121, 373–382. https://doi.org/10.1016/j.wasman.2020.12.017
Guo, H., Xu, H., Liu, J., Nie, X., Li, X., Shu, T., … Yao, Y. (2022). Greenhouse Gas Emissions in the Process of Landfill Disposal in China. Energies, 15(18). https://doi.org/10.3390/en15186711
Han, J. S., Mahanty, B., Yoon, S. U., & Kim, C. G. (2016). Activity of a Methanotrophic Consortium Isolated from Landfill Cover Soil: Response to Temperature, pH, CO2, and Porous Adsorbent. Geomicrobiology Journal, 33(10), 878–885. https://doi.org/10.1080/01490451.2015.1123330
Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439–471. https://doi.org/10.1002/0471263397.env316
Haro, K., Ouarma, I., Nana, B., Bere, A., Tubreoumya, G. C., Kam, S. Z., … Koulidiati, J. (2019). Assessment of CH4 and CO2 surface emissions from Polesgo’s landfill (Ouagadougou, Burkina Faso) based on static chamber method. Advances in Climate Change Research, 10(3), 181–191. https://doi.org/10.1016/j.accre.2019.09.002
He, H., Gao, S., Hu, J., Zhang, T., Wu, T., Qiu, Z., & Zhang, C. (2021). applied sciences In-Situ Testing of Methane Emissions from Landfills Using Laser Absorption Spectroscopy.
He, H., Wu, T., Qiu, Z., Zhao, C., Wang, S., Yao, J., & Hong, J. (2022). Enhanced Methane Oxidation Potential of Landfill Cover Soil Modified with Aged Refuse. Atmosphere, 13(5), 1–12. https://doi.org/10.3390/atmos13050802
He, P., Yang, N., Fang, W., Lü, F., & Shao, L. (2011). Interaction and independence on methane oxidation of landfill cover soil among three impact factors: Water, oxygen and ammonium. Frontiers of Environmental Science and Engineering in China, 5(2), 175–185. https://doi.org/10.1007/s11783-011-0320-8
Henneberger, R., Lüke, C., Mosberger, L., & Schroth, M. H. (2012). Structure and function of methanotrophic communities in a landfill-cover soil. FEMS Microbiology Ecology, 81(1), 52–65. https://doi.org/10.1111/j.1574-6941.2011.01278.x
Hernandez, M. E., Beck, D. A. C., Lidstrom, M. E., & Chistoserdova, L. (2015). Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ, 2015(2). https://doi.org/10.7717/peerj.801
Héry, M., Singer, A. C., Kumaresan, D., Bodrossy, L., Stralis-Pavese, N., Prosser, J. I., … Murrell, J. C. (2008). Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME Journal, 2(1), 92–104. https://doi.org/10.1038/ismej.2007.66
Huang, D., Yang, L., Ko, J. H., & Xu, Q. (2019). Comparison of the methane-oxidizing capacity of landfill cover soil amended with biochar produced using different pyrolysis temperatures. Science of the Total Environment, 693, 133594. https://doi.org/10.1016/j.scitotenv.2019.133594
Huang, D., Yang, L., Xu, W., Chen, Q., Ko, J. H., & Xu, Q. (2020). Enhancement of the methane removal efficiency via aeration for biochar-amended landfill soil cover. Environmental Pollution, 263. https://doi.org/10.1016/j.envpol.2020.114413
IEA. (2020). Sources of methane emissions. Retrieved from https://www.iea.org/data-and-statistics/charts/sources-of-methane-emissions-2
Islam, T., Torsvik, V., Larsen, Ø., Bodrossy, L., Øvreås, L., & Birkeland, N. K. (2016). Acid-tolerant moderately thermophilic methanotrophs of the class Gammaproteobacteria isolated from tropical topsoil with methane seeps. Frontiers in Microbiology, 7(JUN), 1–12. https://doi.org/10.3389/fmicb.2016.00851
Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., … Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 15(7). https://doi.org/10.1088/1748-9326/ab9ed2
Jang, I., Lee, S., Zoh, K. D., & Kang, H. (2011). Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biology and Biochemistry, 43(3), 620–627. https://doi.org/10.1016/j.soilbio.2010.11.032
Jeffrey, L. C., Maher, D. T., Chiri, E., Leung, P. M., Nauer, P. A., Arndt, S. K., … Johnston, S. G. (2021). Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nature Communications, 12(1), 1–8. https://doi.org/10.1038/s41467-021-22333-7
Kallistova, A. Y., Kevbrina, M. V, Nekrasova, V. K., Glagolev, M. V, Serebryanaya, M. I., & Nozhevnikova, A. N. (2005). Methane Oxidation in Landfill Cover Soil. Microbiology, 74(5), 608–614. https://doi.org/10.1007/s11021-005-0110-z
Kashyap, R. K., Chugh, P., & Nandakumar, T. (2016). Opportunities & Challenges in Capturing Landfill Gas from an Active and Un-scientifically Managed Land Fill Site – A Case Study. Procedia Environmental Sciences, 35, 348–367. https://doi.org/10.1016/j.proenv.2016.07.015
Khatri, K., Mohite, J., Pandit, P., Bahulikar, R. A., & Rahalkar, M. C. (2021). Isolation, Description and Genome Analysis of a Putative Novel Methylobacter Species (‘Ca. Methylobacter coli’) Isolated from the Faeces of a Blackbuck (Indian Antelope). Microbiology Research, 12(2), 513–523. https://doi.org/10.3390/microbiolres12020035
Kip, N., Ouyang, W., van Winden, J., Raghoebarsing, A., van Niftrik, L., Pol, A., … den Camp, H. J. M. O. (2011). Detection, isolation, and characterization of acidophilic methanotrophs from sphagnum mosses. Applied and Environmental Microbiology, 77(16), 5643–5654. https://doi.org/10.1128/AEM.05017-11
Kristanto, G. A., Raissa, S. M., & Novita, E. (2015). Effects of compost thickness and compaction on methane emissions in simulated landfills. Procedia Engineering, 125, 173–178. https://doi.org/10.1016/j.proeng.2015.11.025
Kumar, S., & Yong, W. L. (2002). Effect of bentonite on compacted clay landfill barriers. Soil and Sediment Contamination, 11(1), 71–89. https://doi.org/10.1080/20025891106709
Kumaresan, D., Stralis-Pavese, N., Abell, G. C. J., Bodrossy, L., & Murrell, J. C. (2011). Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs. Environmental Microbiology Reports, 3(5), 613–621. https://doi.org/10.1111/j.1758-2229.2011.00270.x
Kundu, S., Zanganeh, J., & Moghtaderi, B. (2016). A review on understanding explosions from methane-air mixture. Journal of Loss Prevention in the Process Industries, 40, 507–523. https://doi.org/10.1016/j.jlp.2016.02.004
Lashof, D. A., & Ahuja, D. R. (1990). Relative contributions of greenhouse gas emissions to global warming. Nature, Vol. 344, pp. 529–531. https://doi.org/10.1038/344529a0
Lavagnolo, M. C., Grossule, V., & Raga, R. (2018). Innovative dual-step management of semi-aerobic landfill in a tropical climate. Waste Management, 74, 302–311. https://doi.org/10.1016/j.wasman.2018.01.017
Lei, Y. (2006). Methane Emission and Oxidation Through Landfill Covers. THE FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING.
Li, W., Khalid, H., Zhu, Z., Zhang, R., Liu, G., Chen, C., & Thorin, E. (2018). Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Applied Energy, 226(May), 1219–1228. https://doi.org/10.1016/j.apenergy.2018.05.055
Lidstrom, M. E. (1988). Isolation and characterization of marine methanotrophs. Antonie van Leeuwenhoek, 54(3), 189–199. https://doi.org/10.1007/BF00443577
Lou, X. F., & Nair, J. (2009). The impact of landfilling and composting on greenhouse gas emissions - A review. Bioresource Technology, 100(16), 3792–3798. https://doi.org/10.1016/j.biortech.2008.12.006
Lou, Z., Wang, L., & Zhao, Y. (2011). Consuming un-captured methane from landfill using aged refuse bio-cover. Bioresource Technology, 102(3), 2328–2332. https://doi.org/10.1016/j.biortech.2010.10.086
Maanoja, S. T., & Rintala, J. A. (2018). Evaluation of methods for enhancing methane oxidation via increased soil air capacity and nutrient content in simulated landfill soil cover. Waste Management, 82, 82–92. https://doi.org/10.1016/j.wasman.2018.10.015
Machado, Sandro L., Carvalho, M. F., Gourc, J. P., Vilar, O. M., & do Nascimento, J. C. F. (2009). Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 29(1), 153–161. https://doi.org/10.1016/j.wasman.2008.02.017
Machado, Sandro Lemos, Santos, Á. C., de Fátima Carvalho, M., Damasceno, L. A. G., Almeida, L. V., & dos Santos, A. B. (2021). Biogas production in a tropical landfill: Long-term monitoring results and analysis of variables of influence. Environmental Monitoring and Assessment, 193(8). https://doi.org/10.1007/s10661-021-09248-y
Maciel, F. J., & Jucá, J. F. T. (2011). Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil. Waste Management, 31(5), 966–977. https://doi.org/10.1016/j.wasman.2011.01.030
Maria, C., Góis, J., & Leitão, A. (2020). Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Reports, 6, 364–369. https://doi.org/10.1016/j.egyr.2019.08.074
Mei, C., Yazdani, R., Han, B., Mostafid, M. E., Chanton, J., VanderGheynst, J., & Imhoff, P. (2015). Performance of green waste biocovers for enhancing methane oxidation. Waste Management, 39, 205–215. https://doi.org/10.1016/j.wasman.2015.01.042
Mei, J., Zhen, G., & Zhao, Y. (2016). Bio-oxidation of Escape Methane from Landfill Using Leachate-Modified Aged Refuse. Arabian Journal for Science and Engineering, 41(7), 2493–2500. https://doi.org/10.1007/s13369-015-1966-5
Mohsen, R. A., Abbassi, B., & Zytner, R. (2020). Investigation of fugitive methane and gas collection efficiency in Halton landfill in Ontario, Canada. Environmental Monitoring and Assessment, 192(6). https://doi.org/10.1007/s10661-020-08308-z
Moreira, J. M. L., & Candiani, G. (2016). Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell. Environmental Monitoring and Assessment, 188(8). https://doi.org/10.1007/s10661-016-5460-7
Murrell, J. C., McDonald, I. R., & Bourne, D. G. (1998). Molecular methods for the study of methanotroph ecology. FEMS Microbiology Ecology, 27(2), 103–114. https://doi.org/10.1016/S0168-6496(98)00063-4
Ngwabie, N. M., Wirlen, Y. L., Yinda, G. S., & VanderZaag, A. C. (2019). Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon. Waste Management, 87, 947–953. https://doi.org/10.1016/j.wasman.2018.02.048
Niemczyk, M., Berenjkar, P., Wilkinson, N., Lozecznik, S., Sparling, R., & Yuan, Q. (2021). Enhancement of CH4 oxidation potential in bio-based landfill cover materials. Process Safety and Environmental Protection, 146, 943–951. https://doi.org/10.1016/j.psep.2020.12.035
Ozbay, G., Jones, M., Gadde, M., Isah, S., & Attarwala, T. (2021). Design and Operation of Effective Landfills with Minimal Effects on the Environment and Human Health. Journal of Environmental and Public Health, 2021. https://doi.org/10.1155/2021/6921607
Parker, T., Dottridge, J., & Kelly, S. (2002). Investigation of the composition and emissions of trace components in landfill gas. Environment Agency, Bristol, UK, 146. Retrieved from www.environment-agency.gov.uk%0Awww.komex.com
Pawlowska, M. (2008). Reduction of methane emission from landfills by its microbial oxidation in filter bed. International Workshop on Management of Pollutant Emission from Landfills and Sludge.
Pehme, K. M., Orupõld, K., Kuusemets, V., Tamm, O., Jani, Y., Tamm, T., & Kriipsalu, M. (2020). Field study on the efficiency of a methane degradation layer composed of fine fraction soil from landfill mining. Sustainability (Switzerland), 12(15), 1–16. https://doi.org/10.3390/su12156209
Pillai, J., & Riverol, C. (2018). Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. Sustainable Energy Technologies and Assessments, 29(June), 139–146. https://doi.org/10.1016/j.seta.2018.08.004
Purmessur, B., & Surroop, D. (2019). Power generation using landfill gas generated from new cell at the existing landfill site. Journal of Environmental Chemical Engineering, 7(3), 103060. https://doi.org/10.1016/j.jece.2019.103060
Qasaimeh, A., Sharo, A. A., & Bani-Melhem, K. (2020). Clayey soil amendment by hydrophilic nano bentonite for landfill cover barrier: A case study. Journal of Environmental Engineering and Landscape Management, 28(3), 148–156. https://doi.org/10.3846/jeelm.2020.12715
Qin, L., Huang, X., Xue, Q., Liu, L., & Wan, Y. (2020). In-situ biodegradation of harmful pollutants in landfill by sludge modified biochar used as biocover. Environmental Pollution, 258. https://doi.org/10.1016/j.envpol.2019.113710
Rachor, I., Gebert, J., Gröngröft, A., & Pfeiffer, E. M. (2011). Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Management, 31(5), 833–842. https://doi.org/10.1016/j.wasman.2010.10.006
Ramprasad, C., Teja, H. C., Gowtham, V., & Vikas, V. (2022). Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model. MethodsX, 9, 101869. https://doi.org/10.1016/j.mex.2022.101869
Rao, M. N., Sultana, R., & Kota, S. H. (2016). Solid and Hazardous Waste Management: Science and Engineering. In Solid and Hazardous Waste Management: Science and Engineering.
Rawat, M., & Ramanathan, A. (2011). Assessment of Methane Flux from Municipal Solid Waste (MSW) Landfill Areas of Delhi, India. Journal of Environmental Protection, 02(04), 399–407. https://doi.org/10.4236/jep.2011.24045
Reddy, K. R., Rai, R. K., Green, S. J., & Chetri, J. K. (2019). Effect of temperature on methane oxidation and community composition in landfill cover soil. Journal of Industrial Microbiology and Biotechnology, 46(9–10), 1283–1295. https://doi.org/10.1007/s10295-019-02217-y
Reddy, K. R., Yargicoglu, E. N., & Chetri, J. K. (2021). Effects of Biochar on Methane Oxidation and Properties of Landfill Cover Soil: Long-Term Column Incubation Tests. Journal of Environmental Engineering, 147(1), 04020144. https://doi.org/10.1061/(asce)ee.1943-7870.0001829
Reddy, K. R., Yargicoglu, E. N., Yue, D., & Yaghoubi, P. (2014). Enhanced microbial methane oxidation in landfill cover soil amended with biochar. Journal of Geotechnical and Geoenvironmental Engineering, 140(9), 1–11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001148
Robertson, T., & Dunbar, J. (2005). GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES. (September), 1–217. Retrieved from http://clu-in.org/download/char/epa-600-r-05-123.pdf
Rodrigue, K. A., Essi, K., Cyril, K. M., & Albert, T. (2018). Estimation of Methane Emission from Kossihouen Sanitary Landfill and Its Electricity Generation Potential (Côte d’Ivoire). Journal of Power and Energy Engineering, 06(07), 22–31. https://doi.org/10.4236/jpee.2018.67002
Rose, J. L., Mahler, C. F., & Izzo, R. L. dos S. (2012). Comparison of the methane oxidation rate in four media. Revista Brasileira de Ciência Do Solo, 36(3), 803–812. https://doi.org/10.1590/s0100-06832012000300011
Rumah, B. L., Stead, C. E., Claxton Stevens, B. H., Minton, N. P., Grosse-Honebrink, A., & Zhang, Y. (2021). Isolation and characterisation of Methylocystis spp. for poly-3-hydroxybutyrate production using waste methane feedstocks. AMB Express, 11(1). https://doi.org/10.1186/s13568-020-01159-4
Sadasivam, B. Y., & Reddy, K. R. (2014). Landfill methane oxidation in soil and bio-based cover systems: A review. Reviews in Environmental Science and Biotechnology, 13(1), 79–107. https://doi.org/10.1007/s11157-013-9325-z
Sadasivam, B. Y., & Reddy, K. R. (2015). Adsorption and transport of methane in biochars derived from waste wood. Waste Management, 43, 218–229. https://doi.org/10.1016/j.wasman.2015.04.025
Sandoval-Cobo, J. J., Casallas-Ojeda, M. R., Carabalí-Orejuela, L., Muñoz-Chávez, A., Caicedo-Concha, D. M., Marmolejo-Rebellón, L. F., & Torres-Lozada, P. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustainable Environment Research, 30(1). https://doi.org/10.1186/s42834-020-00048-6
Scheutz, C., & Kjeldsen, P. (2004). Environmental Factors Influencing Attenuation of Methane and Hydrochlorofluorocarbons in Landfill Cover Soils. Journal of Environmental Quality, 33(1), 72–79. https://doi.org/10.2134/jeq2004.7200
Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., … Spokas, K. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management and Research, 27(5), 409–455. https://doi.org/10.1177/0734242X09339325
Seadi, T. Al, Lukehurst, C., Saedi, T. Al, Lukehurst, C., Seadi, T. Al, & Lukehurst, C. (2012). Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy, Task.
Setiawan, R., & Sudiana, I. M. (2019). Molecular identification of methane oxidizing bacteria from paddy soils and detection methane monooxygenase gene. IOP Conference Series: Earth and Environmental Science, 308(1). https://doi.org/10.1088/1755-1315/308/1/012016
Sharma, K. D., & Jain, S. (2020). Municipal solid waste generation, composition, and management: the global scenario. Social Responsibility Journal, 16(6), 917–948. https://doi.org/10.1108/SRJ-06-2019-0210
Shukla, A. K., Vishwakarma, P., Upadhyay, S. N., Tripathi, A. K., Prasana, H. C., & Dubey, S. K. (2009). Biodegradation of trichloroethylene (TCE) by methanotrophic community. Bioresource Technology, 100(9), 2469–2474. https://doi.org/10.1016/j.biortech.2008.12.022
Shukla, P. N., Pandey, K. D., & Mishra, V. K. (2013). Environmental determinants of soil methane oxidation and methanotrophs. Critical Reviews in Environmental Science and Technology, 43(18), 1945–2011. https://doi.org/10.1080/10643389.2012.672053
Siddiqui, F. Z., Rafey, A., Pandey, S., & Khan, M. E. (2022). Pilot demonstration of clean technology for landfill gas recovery in India – A case study. Cleaner Chemical Engineering, 2(May), 100024. https://doi.org/10.1016/j.clce.2022.100024
Siddiqui, F. Z., Zaidi, S., Pandey, S., & Khan, M. E. (2013). Review of past research and proposed action plan for landfill gas-to-energy applications in India. Waste Management and Research, 31(1), 3–22. https://doi.org/10.1177/0734242X12467066
Smith, T. J. (2009). Methanotrophy / methane oxidation. 293–298.
Srivastava, A. N., & Chakma, S. (2020). Quantification of landfill gas generation and energy recovery estimation from the municipal solid waste landfill sites of Delhi, India. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–14. https://doi.org/10.1080/15567036.2020.1754970
Stern, J. C., Chanton, J., Abichou, T., Powelson, D., Yuan, L., Escoriza, S., & Bogner, J. (2007). Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Management, 27(9), 1248–1258. https://doi.org/10.1016/j.wasman.2006.07.018
Stralis-Pavese, N., Bodrossy, L., Reichenauer, T. G., Weilharter, A., & Sessitsch, A. (2006). 16S rRNA based T-RFLP analysis of methane oxidising bacteria - Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Applied Soil Ecology, 31(3), 251–266. https://doi.org/10.1016/j.apsoil.2005.05.006
Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., & Yamada, M. (2019). The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics. Waste Management, 87, 954–964. https://doi.org/10.1016/j.wasman.2018.12.013
Tanthachoon, N., Chiemchaisri, C., Chiemchaisri, W., Tudsri, S., & Kumar, S. (2008). Methane oxidation in compost-based landfill cover with vegetation during wet and dry conditions in the tropics. Journal of the Air and Waste Management Association, 58(5), 603–612. https://doi.org/10.3155/1047-3289.58.5.603
Tuckett, R. (2018). Greenhouse Gases. https://doi.org/10.1016/B978-0-12-409547-2.14031-4
Us-Epa. (2011). Global Anthropogenic Non-CO2 Greenhouse Gas Emissions:1990-2020. Environmental Protection. https://doi.org/EPA-430-R-06-003
US-EPA. (2012). Landfill Gas Energy: A Guide to Developing and Implementing Greenhouse Gas Reduction Programs. Retrieved from WWW.EPA.GOV/STATELOCALCLIMATE/RESOURCES/STRATEGY-GUIDES.HTML
Vaverková, M. D. (2019). Landfill impacts on the environment— review. Geosciences (Switzerland), 9(10), 1–16. https://doi.org/10.3390/geosciences9100431
Vaverková, M. D., Elbl, J., Koda, E., Adamcová, D., Bilgin, A., Lukas, V., … Zloch, J. (2020). Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmlands. Sustainability (Switzerland), 12(11), 1–20. https://doi.org/10.3390/su12114531
Visvanathan, C., Pokhrel, D., Cheimchaisri, W., Hettiaratchi, J. P. A., & Wu, J. S. (1999). Methanotrophic activities in tropical landfill cover soils: Effects of temperature, moisture content and methane concentration. Waste Management and Research, 17(4), 313–323. https://doi.org/10.1034/j.1399-3070.1999.00052.x
Wang, X., Cao, A., Zhao, G., Zhou, C., & Xu, R. (2017). Microbial community structure and diversity in a municipal solid waste landfill. Waste Management, 66, 79–87. https://doi.org/10.1016/j.wasman.2017.04.023
Wangyao, K., Sutthasil, N., & Chiemchaisri, C. (2021). Methane and nitrous oxide emissions from shallow windrow piles for biostabilisation of municipal solid waste. Journal of the Air and Waste Management Association, 71(5), 650–660. https://doi.org/10.1080/10962247.2021.1880498
Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S. H., & Nopharatana, A. (2010). Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: Case study of Thailand. Environmental Monitoring and Assessment, 164(1–4), 249–261. https://doi.org/10.1007/s10661-009-0889-6
Warmadewanthi, I. D. A. A., Chrystiadini, G., Kurniawan, S. B., & Abdullah, S. R. S. (2021). Impact of degraded solid waste utilization as a daily cover for landfill on the formation of methane and leachate. Bioresource Technology Reports, 15(August), 100797. https://doi.org/10.1016/j.biteb.2021.100797
Wei, X. M., Su, Y., Zhang, H. T., Chen, M., & He, R. (2015). Responses of methanotrophic activity, community and EPS production to CH4 and O2 concentrations in waste biocover soils. Waste Management, 42, 118–127. https://doi.org/10.1016/j.wasman.2015.04.005
Whittenbury, R., Colby, J., Dalton, H., & Reed, H. L. (1976). No Title. Microbial Production and Utilization of Gases, p.281.
World Bank. (2018). World Bank. Retrieved from https://data.worldbank.org/indicator/EN.ATM.METH.KT.CE?most_recent_value_desc=true
Wu, B., Xi, B., He, X., Sun, X., Li, Q., Ouche, Q., … Xue, C. (2020). Methane emission reduction enhanced by hydrophobic biochar-modified soil cover. Processes, 8(2). https://doi.org/10.3390/pr8020162
Xing, Z., Zhao, T., Gao, Y., He, Z., Zhang, L., Peng, X., & Song, L. (2017). Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure. Waste Management, 68, 369–377. https://doi.org/10.1016/j.wasman.2017.05.007
Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
Yasim, N. S. E. M., & Buyong, F. (2023). Comparative of experimental and theoretical biochemical methane potential generated by municipal solid waste. Environmental Advances, 11(August 2022), 100345. https://doi.org/10.1016/j.envadv.2023.100345
Yoshida, N., Iguchi, H., Yurimoto, H., Murakami, A., & Sakai, Y. (2014). Aquatic plant surface as a niche for methanotrophs. Frontiers in Microbiology, 5(FEB), 1–9. https://doi.org/10.3389/fmicb.2014.00030
Yun, J., Jung, H., Ryu, H. W., Oh, K. C., Jeon, J. M., & Cho, K. S. (2018). Odor mitigation and bacterial community dynamics in on-site biocovers at a sanitary landfill in South Korea. Environmental Research, 166, 516–528. https://doi.org/10.1016/j.envres.2018.06.039
Yusnan, Razi, F., & Munawar, E. (2020). Effect of Biocover Thickness on Methane Oxidation Rate of Landfill Gas Emission from Municipal Solid Waste Landfill in Tropical Climate Region. IOP Conference Series: Materials Science and Engineering, 778(1). https://doi.org/10.1088/1757-899X/778/1/012149
Zeiss, C. A. (2006). Accelerated methane oxidation cover system to reduce greenhouse gas emissions from MSW landfills in cold, semi-arid regions. Water, Air, and Soil Pollution, 176(1–4), 285–306. https://doi.org/10.1007/s11270-006-9169-z
Zhang, C., Xu, T., Feng, H., & Chen, S. (2019). Greenhouse gas emissions from landfills: A review and bibliometric analysis. Sustainability (Switzerland), 11(8), 1–15. https://doi.org/10.3390/su11082282