Wastewater Treatment using Oxidation Ditch Microalgae Chlorella sp.: Insight into the Effect of Intermittent Aeration and Characteristic of Effluent Organic Matter

Document Type : Original Research Paper


Department of Environmental Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur, Post Code 60296, Surabaya, Indonesia


Wastewater treatment with microalgae such as oxidation ditch algae reactor (ODAR) could reduce organic matter, however, the process might produce by-products that are toxic when dissolved in water. Effluent organic matter and algae organic matter are by-products of the microalgae process, that are released as well in ODAR system.The presence of these compounds in water can be a precursor for the formation of disinfection by-products (DBPs). The aim of this study is to determine the characteristics of effluent organic matter contained in domestic ODAR using the microalgae Chlorella sp. under variations of oxic and oxic-anoxic conditions. Microalgae were applied in ODAR under oxic for 24 hours of aeration and oxic-anoxic through a brush aerator on for 7 hours and off for 3 hours with a ratio of waste volume to microalgae 1:1 with sampling time up to 5 hours. The results showed that BOD concentration tends to decrease up to 45% and 67% for oxic-anoxic and oxic, respectively. The UV254 value increased up to 110% and 147% for oxic-anoxic and oxic, respectively. Further, fluorescence excitation-emission matrix (FEEM) analysis identified the changing of four organic fractions as measured by the fluorescence regional index (FRI). The results indicate a decrease of aromatic protein-like significantly up to 62% and a decrease in soluble microbial products up to 30%. While humic acid-like and fulvic acid-like tends to increase by about 25-29% and 44-46%.


Main Subjects

Arsad, S., Sari, L. A., Suherman, S. P., Cahyani, D., Nadhira, T., Yulinda, E. N., Musa, M., Lusiana, E. D., & Prasetiya, F. S. (2020). Utilization of tofu wastewater as chlorella pyrenoidosa growth medium. AACL Bioflux, 13(5); 2878-2885.
Asiandu, A.P., Widjajanti, H. & Rosalina, R. (2021). The potential of tofu liquid waste and rice washing wastewater as cheap growth media for Trichoderma sp. J. Environ. Treatment Techniques, 9(4); 775-781.
Cahyonugroho, O. H., Hariyanto, S., & Supriyanto, G. (2022). Dissolved organic matter and its correlation with phytoplankton abundance for monitoring surface water quality. Global J. Environ. Sci. Manage. 8(1); 1-16.
Cahyonugroho, O. H., Hariyanto, S., & Supriyanto, G. (2023). Applying fluorescence dissolved organic matter spectra and phytoplankton biology index for assessing urban river quality. J. Math. Fund. Sci., 54(3); 311-329.
Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37(24); 5701–5710. 
Edzwald, J.K., & Tobiason, J. (2011). Water quality & treatment: a handbook on drinking water. AWWA McGraw-Hill.
Farahdiba, A. U., Hidayah, E. N., Zara, D. W., & Linh, N. T. T. (2020). The feasibility of algae treatment treating fecal sludge wastewater at Surabaya, Indonesia. Asian J. Water, Environ. Pollution, 17(3); 1–6. 
Gururani, P., Bhatnagar, P., Kumar, V., Vlaskin, M.S., & Grigorenko, A.V. (2022). Algal consortiums: A Novel and integrated approach for wastewater treatment. Water, 14(22), 3784; 1-33.
Hidayah, E. N., Chou, Y.-C., & Yeh, H.-H. (2017). Comparison between HPSEC-OCD and F-EEMs for assessing DBPs formation in water. J. Environ. Sci. Health, Part A, 52(4); 391–402. 
Hidayah, E.N., Cahyonugroho, O.H., Pachwarya, R.B., & Ramanathan, A.L. (2021). Efficiency of a pilot hybrid wastewater treatment system comprising activated sludge and constructed wetlands planted with Canna lily and Cyperus papyrus. Water Environ. J., 35(2); 647–656.
Hidayah, E. N., Cahyonugroho, O. H., Sulistyo, E.N., & Karnaningroem, N. (2022). Using molecular weight-based fluorescent detector to characterize dissolved effluent organic matter in oxidation ditch with algae. Environ. Sci. Pollution Res., 29(44); 67418-67429. 
Jamalipour, P., Choobkar, N., Abrishamkar, M., Pournamdari, E. (2022). Design of fluorescent method for sensing toxic diazinon in water samples using PbS quantum dots-based gelatin. Journal of Environmental Science and Health, Part B, 57(9); 720-728.
Khan, S.I., Zamyadi, A., Rao, N. R. H., Li, X., Stuetz, R. M., & Henderson, R. K. (2019). Fluorescence spectroscopic characterisation of algal organic matter: towards improved in situ fluorometer development. Environ. Sci.: Water Res. Technol., 5(2); 417–432. 
Li, G., Li, L., Song, K., Yuan, Z., Zhu, S., Zhang, J., & Xie, F. (2020). Photochemical degradation characteristics of alga-sourced dissolved organic matter in Chaohu Lake, China. Water Supply, 20(8); 3083–3095. 
Ly, Q. V., Lee, M.-H., & Hur, J. (2019). Using fluorescence surrogates to track algogenic dissolved organic matter (AOM) during growth and coagulation/flocculation processes of green algae. J. Environ. Sci., 79, 311–320. 
Meng, Y., Wang, Y., Han, Q., Xue, N., Sun, Y., Gao, B., & Li, Q. (2016). Trihalomethane (THM) formation from synergic disinfection of biologically treated municipal wastewater: Effect of ultraviolet (UV) irradiation and titanium dioxide photocatalysis on dissolve organic matter fractions. Chem. Eng. J., 303; 252–260. 
Nazar, A.R.S., Kurade, M.B., Khan M.A., Jeon, B.H. (2022). Effect of humic acid on adsorption of methylparaben from aqueous solutions onto commercially available granular activated carbons. Scientia Iranica, 29; 1364-1376
Ni, B.-J., Zeng, R. J., Fang, F., Xie, W.-M., Sheng, G.-P., & Yu, H.-Q. (2010). Fractionating soluble microbial products in the activated sludge process. Water Res., 44(7); 2292–2302. 
Peiris, R. H., Budman, H., Moresoli, C., & Legge, R. L. (2011). Identification of humic acid-like and fulvic acid-like natural organic matter in river water using fluorescence spectroscopy. Water Sci. Technol., 63(10); 2427–2433. 
Singh, N.K., Pandey, S., Singh, R.P., Dahiya, S., Gautam, S., & Kazmi, A.A. (2018). Effect of intermittent aeration cycles on EPS production and sludge characteristics in a field scale IFAS reactor. J. Water Process Eng., 23; 230-238.
Shon, H. K., Vigneswaran, S., & Snyder, S. A. (2006). Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Crit. Rev. Environ. Sci. Technol., 36(4); 327–374. 
Villacorte, L. O., Ekowati, Y., Neu, T. R., Kleijn, J. M., Winters, H., Amy, G., Schippers, J. C., & Kennedy, M. D. (2015). Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res., 73; 216–230. 
Xing, L., Fabris, R., Chow, C. W. K., van Leeuwen, J., Drikas, M., & Wang, D. (2012). Prediction of DOM removal of low specific UV absorbance surface waters using HPSEC combined with peak fitting. J. Environ. Sci., 24(7); 1174–1180. 
Xue, S., Jin, W., Zhang, Z., & Liu, H. (2017). Reductions of dissolved organic matter and disinfection by-product precursors in full-scale wastewater treatment plants in winter. Chemosphere, 179; 395–404.