Electro Oxidation Process for Wastewater Treatment in Petroleum Refineries

Document Type : Original Research Paper


1 Karabala Refinery Project, Karabala, Iraq

2 Department of Chemical Engineering, University of Mazandaran, Iran

3 Engineering Techniques of Fuel and Energy Department, Al-mustaqbal University College, Babel, Iraq

4 Department of Renewable Energy Techniques, Technical Institute-Kut, Middle Technical University, Baghdad, Iraq


In this research, successive electro-oxidation (EO) process was utilized to eliminate some of the primary organic contaminants in effluent wastewater, specifically phenol and chemical oxygen demand (COD). The performance of the electro-oxidation (EO) process was studied by using two graphite electrodes as anodes and three stainless steel electrodes as cathodes, which is a new strategy in this field. Taguchi method has been used to design experiments to approach the best experimental conditions for phenol and COD removal as significant responses. The best operating conditions that resulted in the maximum reduction of phenol and COD were current density (CD = 25 mA/cm2), pH = 4, support electrolyte (NaCl=2g/l), the distance between electrodes (Dist.=5mm), and time of 60 minutes. At these operating conditions, phenol and COD removal were 99.27% and 99.96%, respectively. This work provides important insights into a novel water and wastewater treatment method with a detailed analysis of the results.


Main Subjects

Ahmad, M. S., Ab Rahim, M. H., Alqahtani, T. M., Witoon, T., Lim, J.-W., & Cheng, C. K. (2021). A review on advances in green treatment of glycerol waste with a focus on electro-oxidation pathway. Chemosphere 276, 130128.
Alalwan, H. A., Ali, N. S. M., Mohammed, M. M., Mohammed, M. F., & Alminshid, A. H. (2023). A comparison study of methyl green removal by peroxi-coagulation and peroxi-electrocoagulation processes. Cleaner Engineering and Technology 13, 100623.
Alalwan, H. A., Alminshid, A. H., Mohammed, M. M., & Mohammed, M. F. (2022). Reviewing of using Nanomaterials for Wastewater Treatment. Pollution 8, 995-1013.
Anglada, A., Urtiaga, A., & Ortiz, I. (2009). Contributions of electrochemical oxidation to waste‐water treatment: fundamentals and review of applications. Journal of Chemical Technology & Biotechnology 84, 1747-1755.
Awad, E. S., Imran, N. S., Albayati, M. M., Snegirev, V., Sabirova, T. M., Tretyakova, N. A., Alsalhy, Q. F., Al-Furaiji, M. H., Salih, I. K., & Majdi, H. S. (2022). Groundwater hydrogeochemical and quality appraisal for agriculture irrigation in greenbelt area, Iraq. Environments 9, 43.
Bayar, S., Yilmaz, A. E., Boncukcuoğlu, R., Fil, B. A., & Kocakerìm, M. M. (2013). Effects of operational parameters on cadmium removal from aqueous solutions by electrochemical coagulation. Desalination and Water Treatment 51, 2635-2643.
Beauregard, N., Al-Furaiji, M., Dias, G., Worthington, M., Suresh, A., Srivastava, R., Burkey, D. D., & McCutcheon, J. R. (2020). Enhancing iCVD modification of electrospun membranes for membrane distillation using a 3D printed Scaffold. Polymers 12, 2074.
Chaulia, P. K., & Das, R. (2008). Process parameter optimization for fly ash brick by Taguchi method. Materials Research 11, 159-164.
Diya’uddeen, B. H., Daud, W. M. A. W., & Aziz, A. A. (2011). Treatment technologies for petroleum refinery effluents: A review. Process safety and environmental protection 89, 95-105.
dos Santos, A. J., Fajardo, A. S., Kronka, M. S., Garcia-Segura, S., & Lanza, M. R. (2021). Effect of electrochemically-driven technologies on the treatment of endocrine disruptors in synthetic and real urban wastewater. Electrochimica Acta 376, 138034.
Ebert-Uphoff, I., Lagerquist, R., Hilburn, K., Lee, Y., Haynes, K., Stock, J., Kumler, C., & Stewart, J. Q. (2021). CIRA Guide to Custom Loss Functions for Neural Networks in Environmental Sciences--Version 1. arXiv preprint arXiv:2106.09757.
EPA, E. P. A. (2002). National primary drinking water regulations: long term 1 enhanced surface water treatment rule. Final rule. Federal register 67, 1811-1844.
Fıl, B. A., Boncukcuoğlu, R., Yilmaz, A. E., & Bayar, S. (2014). Electro‐oxidation of pistachio processing industry wastewater using graphite anode. Clean–Soil, Air, Water 42, 1232-1238.
Ibrahim, D. S., Devi, P. S., & Balasubramanian, N. (2013). Electrochemical oxidation treatment of petroleum refinery effluent. Int. J. Sci. Eng. Res 4, 1-5.
Jin, P., Chang, R., Liu, D., Zhao, K., Zhang, L., & Ouyang, Y. (2014). Phenol degradation in an electrochemical system with TiO2/activated carbon fiber as electrode. Journal of Environmental Chemical Engineering 2, 1040-1047.
Kalash, K. R., Al-Furaiji, M. H., Waisi, B., & Ali, R. A. (2020). Evaluation of adsorption performance of phenol using non-calcined Mobil composition of matter no. 41 particles. Desalin. Water Treat. 198, 232-240.
Kalash, K. R., Kadhom, M. A., & Al-Furaiji, M. H. (2019). Short-Cut Nitrification of Iraqi Municipal Wastewater for Nitrogen Removal in a Single Reactor. In “IOP Conference Series: Materials Science and Engineering”, Vol. 518, pp. 022024. IOP Publishing.
Li, F. M., Huang, L., Zaman, S., Guo, W., Liu, H., Guo, X., & Xia, B. Y. (2022). Corrosion chemistry of electrocatalysts. Advanced Materials 34, 2200840.
Martínez-Huitle, C. A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental 87, 105-145.
Martinez-Villafane, J., & Montero-Ocampo, C. (2010). Optimisation of energy consumption in arsenic electro-removal from groundwater by the Taguchi method. Separation and Purification Technology 70, 302-305.
Mohammed Ali, N. S., Alalwan, H. A., Alminshid, A. H., & Mohammed, M. M. (2022). Synthesis and Characterization of Fe3O4-SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions. Pollution 8, 295-302.
Mohammed, M. M., Alalwan, H. A., Alminshid, A., Hussein, S. A. M., & Mohammed, M. F. (2022). Desulfurization of heavy naphtha by oxidation-adsorption process using iron-promoted activated carbon and Cu+ 2-promoted zeolite 13X. Catalysis Communications, 106473.
Moradi, M., Vasseghian, Y., Khataee, A., Kobya, M., Arabzade, H., & Dragoi, E.-N. (2020). Service life and stability of electrodes applied in electrochemical advanced oxidation processes: a comprehensive review. Journal of Industrial and Engineering Chemistry 87, 18-39.
Nandhini, M., Suchithra, B., Saravanathamizhan, R., & Prakash, D. G. (2014). Optimization of parameters for dye removal by electro-oxidation using Taguchi Design. Journal of Electrochemical Science and Engineering 4, 227-234.
Noorani, K. R. P. M., Flora, G., Surendarnath, S., Stephy, G. M., Amesho, K. T., Chinglenthoiba, C., & Thajuddin, N. (2024). Recent advances in remediation strategies for mitigating the impacts of emerging pollutants in water and ensuring environmental sustainability. Journal of Environmental Management 351, 119674.
Rahman, E. A., & Mustafa, M. A. (2022). Prediction of Heavy Metals Values for South-East of Baghdad Study Area. Journal of Techniques 4, 9-16.
Sohal, N., Singla, S., Malode, S. J., Basu, S., Maity, B., & Shetti, N. P. (2023). Bioresource-based graphene quantum dots and their applications: a review. ACS Applied Nano Materials 6, 10925-10943.
Sun, Y., Xu, Z., Xu, X., Nie, Y., Tu, J., Zhou, A., Zhang, J., Qiu, L., Chen, F., & Xie, J. (2022). Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Storage Materials 48, 192-204.
Tan, H. W., Choong, Y. Y. C., Kuo, C. N., Low, H. Y., & Chua, C. K. (2022). 3D printed electronics: Processes, materials and future trends. Progress in Materials Science 127, 100945.
Tong, Y., Yan, X., Liang, J., & Dou, S. X. (2021). Metal‐based electrocatalysts for methanol electro‐oxidation: progress, opportunities, and challenges. Small 17, 1904126.
Yavuz, Y., Koparal, A. S., & Öğütveren, Ü. B. (2010). Treatment of petroleum refinery wastewater by electrochemical methods. Desalination 258, 201-205.
Yörük, Ö., Yıldız, M. G., Uysal, D., Doğan, Ö. M., & Uysal, B. Z. (2023). Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: Parametric studies using single-chamber cell. International Journal of Hydrogen Energy 48, 4173-4181.