Removal of Benzyl butyl phthalate by Polyetheretherketone/polyvinylalcohol nanocomposite Modified with Zinc oxide nanoparticles Adsorbent from Wastewater

Document Type : Original Research Paper


1 Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran


The applicability of Polyetheretherketone/polyvinylalcohol nanocomposite modified with zinc oxide nanoparticles synthesis for the removal of benzyl butyl phthalate from wastewater. Identical techniques, including BET, FT-IR, XRD, and SEM, have to characterize this unknown material. The investigation shows the applicability of adsorbent PEEK/PVA/ZnONPs, as an available, suitable, and low-cost adsorbent for adequately removing the benzyl butyl phthalate from wastewater. The impacts of variables, including benzyl butyl phthalate concentration, adsorbent, pH, and time (15 mgL-1, 0.3 g, 5.0, and 60 min). Based on the received data, the adsorption of benzyl butyl phthalate on the PEEK/PVA/ZnONPs adsorbent agrees well with the Langmuir adsorption model isotherm (qm = 34.24 mgg-1). The results of the thermodynamic parameter showed a negative enthalpy (-77.0 KJ/mol), a negative Gibbs free energy (-11.7 KJ/mol), and negative entropy (-274.0 J/K.mol). This led to the conclusion that the adsorption process is energetically possible, and exothermic was also spontaneous. This work indicates that the PEEK/PVA/ZnONPs, used as an ecologically adapted, adsorbent holds promise for eliminating benzyl butyl phthalate from wastewater.


Main Subjects

Abdel Daiem, M.M. Rivera-Utrilla, J., Ocampo-Pérez, R., Méndez-Díaz, J.D., & Sánchez-Polo, M. (2012). Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies— a review. J. Environ. Manage., 109; 164-178.
Alhaddad, F.A., Abu-Dieyeh, M., Dana Daana, D., Helaleh, M., & Al-Ghouti, M. (2021). Occurrence and removal characteristics of phthalate esters from bottled drinking water using silver modified roasted date pits. J. Environ. Health Sci. Eng., 19; 733–751. 
Balkanloo, P.G., Mahmoudian, M., & Hosseinzadeh, M.T. (2020). A comparative study between MMT-Fe3O4/PES, MMT-HBE/PES, and MMT-acid activated/PES mixed matrix membranes. Chem. Eng. J. 396; 125188.
Chatterjee, S., & Dutta, T.K. (2008). Metabolic cooperation of Gordonia sp. strain MTCC 4818 and Arthrobacter sp. strain WY in the utilization of butyl benzyl phthalate: effect of a novel coculture in the degradation of mixture of phthalates. Microbiology., 154; 3338–3346. 
Chen, C.W., Chen, C.F., & Dong, C.D. (2013). Distribution of phthalate esters in sediments of Kaohsiung Harbor. J. Taiwan Soil Sediment Contamina., 22(2); 119-131.
Dinari, M., & Haghighi, A. (2017). Surface modification of TiO2 nanoparticle by three dimensional silane coupling agent and preparation of polyamide/modified-TiO2 nanocomposites for removal of Cr (VI) from aqueous solutions. Prog. Org. Coatings., 110; 24–34. 
Fallahrodbari, Sh. (2017). Removal of Benzyl Butyl Phthalate by adsorption onto Ag-MWCNTs: Kinetic and thermodynamic studies. Orien. J. Chem., 33(2); 910-919. 
Gao, D., Li, Z., Wen, Z., & Ren, N. (2014). Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. J. Chemosphere., 95; 24-32.  
Ghazali, A.A., Marahel, F., & Mombeni Goodajdar, B. (2023). Synthesized CM-β-CD-Fe3O4NPs: As an Environmental Friendly and Effective Adsorbent for Elimination of Boron from Aqueous Solutions. Int. J. Environ. Anal. Chem., 103(18); 6324-6343. 
Hamil, M.I., Abdulwahid, K.I., & AL-Shakban, Mu. (2022). Improvement of Corrosion and Osseointegration Characteristics for Ti6Al4V Alloy by Coating with Polyetheretherketone (PEEK) and Nanohydroxyapatite Using Electrophoretic Deposition for Biomedical Applications. J. Nanostruct., 12(4); 826-841.  
Jaleh, B., Zare, E., Azizian, S., Qanati, O., Nasrollahzadeh, M., & Varma, R.S. (2020). Preparation and characterization of polyvinylpyrrolidone/polysulfone ultrafiltration membrane modified by graphene oxide and titanium dioxide for enhancing hydrophilicity and antifouling properties. J. Inorg. Organomet. Polym. Mater. 30; 2213-2223. 
Jazebizadeh, M.H., & Khazraei, S. (2017). Investigation of Methane and Carbon Dioxide Gases Permeability through PEBAX/PEG/ZnO Nanoparticle Mixed Matrix Membrane. Silicon., 9; 775-784.  
Just, A.C., Whyatt, R.M., Perzanowski, M.S., Calafat, A.M., and Perera, F.P. (2012). Prenatal Exposure to Butylbenzyl Phthalate and Early Eczema in an Urban Cohort. Environ. Health Perspec., 120(10); 1475-1480.
Keriene, I., & Maruska, A. (2022).  A review on the presence and removal of phthalates from wastewater. Urben Water J., 19(8); 769-781.  
Liu, P., & Chen, C. (2010). Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells. Toxicol. Appl. Pharmacol., 244 (3); 308 -314.
Li, Z., Huang, Y., Wang, H., Wang, D., Wang, X., & Han, F. (2017). Three-dimensional hierarchical structures of ZnO nanorods as a structure adsorbent for water treatment. J. Mater. Sci. Technol., 33(8); 864-868.  
Moawed, E.A., Abulkibash, A.B., & El-Shahat, M.F. (2015). Synthesis and characterization of iodo polyurethane foam and its application in removing of aniline blue and crystal violet from laundry wastewater. J. Taibah Univ. Sci., 9(1); 80-88.  
Moazzen, M., Khaneghah, A.M., Shariatifar, N., Ahmadloo, M., Eş, I., Baghani, A.N., Yousefinejad, S., Alimohammadi, M., Azari, A., Dobaradaran, S., Rastkari, N., Nazmara, S., Delikhoon, M., & Jahed Khaniki, G. (2018). Multi-walled carbon nanotubes modified with iron oxide and silver nanoparticles (MWCNT-Fe3O4/Ag) as a novel adsorbent for determining PAEs in carbonated soft drinks using magnetic SPE-GC/MS method. Arab. J. Chem., 12(3); 1878-1892.  
Mostafa, M.H., Elsawy, M.A., Darwish, M.S., Hussein, L.I., & Abdaleem, A.H. (2020). Microwave-Assisted preparation of Chitosan/ZnO nanocomposite and its application in dye removal. J. Mater. Chem. Phys., 248; 122914. doi: 10.1016/j.matchemphys.2020.122914.  
Nandi, M., Tanushree Paul, T., Kumar Kanaujiya, D., Baskaran, D., Pakshirajan, K., & Pugazhenthi, G. (2021). Biodegradation of benzyl butyl phthalate and dibutyl phthalate by Arthrobacter sp. via micellar solubilization in a surfactant-aided system. Water Supply., 21(5); 2084–2098.  
Net, S., Delmont, A., Sempere, R., Paluselli, A., & Baghdad, O. (2015). Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review. J. Sci. Total Environ., 515; 162-180.
Pournamdari, E. (2023). Response Surface Methodology for Adsorption of humic acid by Polyetheretherketone/ Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles from Industrial Wastewater. Pollution., 9(3); 965-983.   
Pournamdari, E., Niknam, L., Davoudi, Sh., & Khazali, F. (2024). Response Surface Methodology, and Artificial Neural Network Model for Removal of Textile dye Reactive Yellow 105 from Wastewater using Zeolitic Imidazolate-67 Modified by Fe3O4 Nanoparticles. Int. J. Phytoremed., 26(1); 98-113.   
Rafieyan, S.G., Ghaedi, M., Marahel, F., & Maleki. A. (2022). Application of Terminalia catappa wood-based activated carbon modified with CuO nanostructures coupled with H2O2 for the elimination of chemical oxygen demand in the gas refinery. J. Nanostruct. Chem., 12(2), 159-177. 
Rahmani Piani, M., Abrishamkar, M., Mombini Godajdar, B., & Hossieni, M. (2022). Removal of Humic Acids (HAs) in Drinking Water by Adsorption onto Polysulfone/Fe2O3 Mixed Matrix Membrane: Study kinetics and Isotherm Analysis. J. Appl. Chem. Res., 16(1); 8-29. 
Rahmani Piani, M., Abrishamkar, M., Mombini Godajdar, B., & Hossieni, M. (2021). Trihalomethanes (THMs) removal from aqueous solutions using environmental friendly and effective adsorbent onto Mespilus germanica modified by Fe2 (MoO4)3 nanocomposite on equilibrium, thermodynamic, and kinetics. Desal. Water Treat., 223; 288-302. 
Safarpour, M., Vatanpour, V., & Khataee, A. (2016). Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination. 393; 65-78. 
Shaida, M., Dutta, R., & Sen, A. (2018). Removal of diethyl phthalate via adsorption on mineral rich waste coal modified with chitosan. J. Mol. Liq., 261; 271-282.
Silori, R. Zang, J. Raval, N.P. Giri, Jü. Mahlknecht, B.S. Mora, A. Dueñas-Moreno, J. Tauseef, S.M., & Kumar, M. (2023). Adsorptive removal of ciprofloxacin and sulfamethoxazole from aqueous matrices using sawdust and plastic waste-derived biochar: A sustainable fight against antibiotic resistance. Bioresour Technol. 387; 129537. doi: 10.1016/j.biortech.2023.129537. 
Taher, Z., Iiyas, A., Li, X., & Royl Bilad, M. (2017). Tuning the gas separation performance of fluorinated and sulfonated PEEK membranes by incorporation of zeolite 4A. J. Appl. Polym. Sci., 135(10); 45952-45964.
Wittassek, M., Koch, H.M., Angerer, J., & Brüning, T. (2011). Assessing exposure to phthalates - the human biomonitoring approach. Mol. Nutr. Food Res., 55(1); 7-31.
Xu, X.R., Li, H.B., Gu, J.D., & Li, X.Y. (2007). Kinetics of n-butyl benzyl phthalate degradation by a pure bacterial culture from the mangrove sediment. J. Hazard. Mater., 140; 194–199. 
Zangeneh, H., Zinatizadeh, A.A., Zinadini, S., Feyzi, M., & Bahnemann, D.W. (2019). Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2SiO2/CoFe2O4 nanoparticles. Separa. Purif. Technol. 209; 764-772. 
Zhang, Y. (2017). Widening CO2-facilitated transport passageways in SPEEK matrix using polymer brushes functionalized double-shelled organic sub microcapsules for efficient gas separation. J. Membr. Sci., 525; 330-341.