Agro-Industrial Aloe Vera Waste-Derived Bioadsorbent for Efficient Aluminum Removal from Water

Document Type : Original Research Paper

Authors

1 Escuela de Ingeniería Química, Universidad del Valle, Campus Meléndez, Calle 13 # 100-00, Cali, Colombia

2 Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Campus Las Guacas, 190001, Popayán, Colombia

10.22059/poll.2024.372337.2252

Abstract

Removing metal pollutants from water sources has become a critical environmental concern, demanding ongoing research and innovation in remediation technologies. Among the treatment methods, adsorption, using organic materials derived from agro-industrial wastes, stands out. The use of bioadsorbents derived from agro-industrial wastes, such as aloe vera, can be an effective and environmentally friendly solution for removing aluminum or other pollutants in irrigation water. This study aims to evaluate the aluminum removal capacity of a bioadsorbent developed from aloe vera processing wastes, using an adsorption column at a laboratory scale. For this purpose, tests were carried out with different doses of bioadsorbent and at different influent pH, using a two-factor, three-level factorial design. FT-IR, RAMAN and SEM analyses were performed to characterize the adsorption mechanism between aluminum and the bioadsorbent, which is quite complex. The present study demonstrated that the developed bioadsorbent has an adsorption capacity between 1.14-0.64 mg/g and achieved aluminum removal rates above 73% in all experiments, with the maximum removal (about 98%) observed at pH 4.5. This high efficiency in aluminum removal, combined with the use of agro-industrial waste as a bioadsorbent source, makes it a cost-effective and environmentally friendly solution. This suggests a promising potential for real-world water treatment applications, particularly in irrigation systems. Such an approach offers a sustainable and efficient solution for contaminant removal, in line with the increasing focus on environmental responsibility in water management.

Keywords

Main Subjects


Abedi, S., Zavvar Mousavi, H., & Asghari, A. (2016). Investigation of heavy metal ions adsorption by magnetically modified aloe vera leaves ash based on equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 57(29), 13747–13759. 
Alalwan, H. A., Alminshid, A. H., Mohammed, M. M., Mohammed, M. F., & Shadhar, M. H. (2022). Reviewing of Using Nanomaterials for Wastewater Treatment. In Pollution, 8(3), 995–1013. 
Ali, N. S. M., Alalwan, H. A., Alminshid, A. H., & Mohammed, M. M. (2022). Synthesis and Characterization of Fe3O4- SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions. Pollution, 8(1), 295–302. 
Amaral, E. T., Bender, L. B. Y. C., Rizzetti, T. M., & Schneider, R. de C. de S. (2023). Removal of organic contaminants in water bodies or wastewater by microalgae of the genus Chlorella: A review. Case Studies in Chemical and Environmental Engineering, 8. 
Balaba, N., Horsth, D. F. L., Correa, J. D. S., Primo, J. D. O., & Jaerger, S. (2023). Eco-Friendly Polysaccharide-Based Synthesis of Nanostructured. Materials, 16(693), 1–15. 
Boeris, P. S., Agustín, M. del R., Acevedo, D. F., & Lucchesi, G. I. (2016). Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida. Journal of Biotechnology, 236, 57–63. 
Chee, C., Bin, G., Stephen, J., Marjo, C. E., Munroe, P., & Rich, A. M. (2012). Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX. Vibrational Spectroscopy, 62, 248–257. 
da Costa, T. B., da Silva, M. G. C., & Vieira, M. G. A. (2020). Crosslinked alginate/sericin particles for bioadsorption of ytterbium: Equilibrium, thermodynamic and regeneration studies. International Journal of Biological Macromolecules, 165, 1911–1923. 
Das, G. C., Kumar Das, A., Das, D., Raj Maity, T., Samanta, A., Ali Alasmary, F., Salem Almalki, A., Iqbal, A., & Dolai, M. (2023). Ortho-Vanillin based multifunctional scaffold for selective detection of Al3+ and Zn2+ employing molecular logic with DFT study and cell imaging with live Grass pea. Journal of Photochemistry and Photobiology A: Chemistry, 440(March), 114663. 
Duany, S., Arias, T., Bessy, T., & Rodríguez, D. (2022). Bioadsorbentes no convencionales empleados en la remoción de metales pesados . Revisión. Tecnología Química, 42(1), 94–113.
Giannakoudakis, D., Hosseini-Bandegharaei, A., Panagiota, T., Triantafyllidis, K., Kornaros, M., & Anastopoulos, I. (2018). Aloe vera waste biomass-based adsorbent removal of aquatic pollutants_ A review. Environmental Management, 227, 354–364.
Goswami, M., Patowary, R., Patowary, K., Sarma, H. P., Rabha, S., Devi, B., Sarma, N., Das, E., & Devi, A. (2023). Environment friendly treatment of petroleum hydrocarbon contaminated formation water: Mechanisms and consequences for degradation and adsorption. Water Resources and Industry, 30. 
Hamman, J. H. (2008). Composition and applications of Aloe vera leaf gel. Molecules, 13(8), 1599–1616. 
Kalderis, D., Stavroulakis, G., Tsubota, T., & Çalhan, S. D. (2024). Valorization of Aloe vera waste for the production of Ca and P-rich hydrochars. Sustainable Chemistry for the Environment, 5, 100057. 
Katubi, K. M., Amari, A., Harharah, H. N., Eldirderi, M. M., Tahoon, M. A., & Rebah, F. Ben. (2021). Aloe vera as promising material for water treatment: A review. Processes, 9(5), 1–16. 
Kawakami, M., Kanba, H., Sato, K., Takenaka, T., Gupta, S., Chandratilleke, R., & Sahajwalla, V. (2006). Characterization of thermal annealing effects on the evolution of coke carbon structure using raman spectroscopy and x-ray diffraction. ISIJ International, 46(8), 1165–1170. 
Khaniabadi Omidi, Y., Jafari, A., Nourmoradi, H., Taheri, F., & Saeedi, S. (2015). Adsorption of 4-chlorophenol from aqueous solution using activated carbon synthesized from aloe vera green wastes. Journal of Advances in Environmental Health Research, 3(2), 120–129. 
Li, J., Gao, Y., Gao, Y., Chen, Z., Wang, R., & Xu, Z. (2020). Study on aluminum removal through 5-sulfosalicylic acid targeting complexing and D290 resin adsorption. Minerals Engineering, 147. 
Li, J., Liu, Y., Wang, J., Liu, Y., Zhang, M., Zhao, L., Gu, S., Lin, R., & Chen, L. (2024). Research progress on the application of natural adsorbents in the treatment of livestock wastewater. Desalination and Water Treatment, 317, 100018. 
Li, W., Wang, N., Lu, F., Chai, H., & Gu, H. (2024). Selective separation of aluminum, silicon, and titanium from red mud using oxalic acid leaching, iron precipitation and pH adjustments with calcium carbonate. Hydrometallurgy, 223. 
Lu, S., & Zong, Y. (2018). Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Environmental Science and Pollution Research, 25(30), 30401–30409. 
Maia, L. C., Soares, L. C., Carvalho, M. M. C. E., dos Santos, G. R., de Azevedo, E. R., Soares, J. dos S., & Gurgel, L. V. A. (2023). Synthesis and application of an unprecedented bioadsorbent for removing arsenic from aqueous systems. Separation and Purification Technology, 324. 
Malakootian, M., Mansoorian, H. J., & Yari, A. R. (2015). Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant. Iranian Journal of Health, Safety & Environment, 1(3), 117–125.
McCabe, W. L., Smith, J. C., & Harriott, P. (2007). Operaciones unitarias en ingenieria quimica. In McGRAW-HILL.
Mohammed, M. M., Alalwan, H. A., Alminshid, A., Hussein, S. A. M., & Mohammed, M. F. (2022). Desulfurization of heavy naphtha by oxidation-adsorption process using iron-promoted activated carbon and Cu+2-promoted zeolite 13X. Catalysis Communications, 169, 106473. 
Moosa, A., Ridha, A., Moosa, A. A., Ridha, A. M., & Hussien, N. A. (2016). Adsorptive Removal of Lead Ions from Aqueous Solution Using Biosorbent and Carbon Nanotubes Adsorptive. American Kournal of Materials Science, 6(5), 115–124. 
Nidheesh, P. V., Khatri, J., Anantha Singh, T. S., Gandhimathi, R., & Ramesh, S. T. (2018). Review of zero-valent aluminium based water and wastewater treatment methods. In Chemosphere, 200, 621–631. 
Nilamsari, Sofyana, Lubis, M. R., Prilyanti, D., & Maimun, T. (2022). Combination of adsorption process using bioadsorbent from coffee ground and ultrafiltration membrane in removing iron and lead content from water. Materials Today: Proceedings, 63, S115–S121. 
Nouioua, A., Ben Salem, D., Ouakouak, A., Rouahna, N., Baigenzhenov, O., & Hosseini-Bandegharaei, A. (2023). Production of biochar from Melia azedarach seeds for the crystal violet dye removal from water: combining of hydrothermal carbonization and pyrolysis. Bioengineered, 14(1), 290–306. 
Olawale, S. A., Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Okafor, C. C., Sellaoui, L., & Badawi, M. (2022). Thermodynamics and Mechanism of the Adsorption of Heavy Metal Ions on Keratin Biomasses for Wastewater Detoxification. Adsorption Science & Technology, 2022. 
Pabón, S. E., Benítez, R., Sarria, R. A., & Gallo, J. A. (2020). Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. Entre Ciencia e Ingeniería, 14(27), 9–18.
Pal, D. B., Saini, R., Srivastava, N., Ahmad, I., Alshahrani, M. Y., & Gupta, V. K. (2022). Waste biomass based potential bioadsorbent for lead removal from simulated wastewater. Bioresource Technology, 349. 
Panhwar, A. H., Kazi, T. G., Naeemullah, Afridi, H. I., Shah, F., Arain, M. B., & Arain, S. A. (2016). Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: Application of a novel solid phase microextraction method. Environmental Toxicology and Pharmacology, 43, 242–247. 
Poudyal, D. C., Dhamu, V. N., Paul, A., Samson, M., Muthukumar, S., & Prasad, S. (2022). A novel single step method to rapidly screen for metal contaminants in beverages, a case study with aluminum. Environmental Technology and Innovation, 28, 102691. 
Sanchez-Silva, J. M., González-Estrada, R. R., Blancas-Benitez, F. J., & Fonseca-Cantabrana, Á. (2020). Utilización de subproductos agroindustriales para la bioadsorción de metales pesados. TIP Revista Especializada En Ciencias Químico-Biológicas, 23, 1–18. 
Senze, M., Kowalska-Góralska, M., & Czyż, K. (2021). Availability of aluminum in river water supplying dam reservoirs in Lower Silesia considering the hydrochemical conditions. Environmental Nanotechnology, Monitoring and Management, 16. 
Shetty, R., Vidya, C. S. N., Prakash, N. B., Lux, A., & Vaculík, M. (2021). Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Science of the Total Environment, 765, 1–11. 
Singh, P., Hundal, J. S., Patra, A. K., Wadhwa, M., & Sharma, A. (2021). Sustainable utilization of Aloe vera waste in the diet of lactating cows for improvement of milk production performance and reduction of carbon footprint. Journal of Cleaner Production, 288. 
Tan, L., Zhang, Y., Zhang, W., Zhao, R., Ru, Y., & Liu, T. (2022). One-pot method to prepare lignin-based magnetic biosorbents for bioadsorption of heavy metal ions. Industrial Crops and Products, 176. 
Torres Gómez, G. A., Marulanda Raigoso, J. S., & Villa Ramírez, R. (2020). Descripción de la calidad fisicoquímica de los residuos de sábila (Aloe vera) (L.) Burm.f. Revista de Investigaciones Universidad Del Quindío, 32(1), 16–21.
Wang, C., Wang, G., Xie, S., Wang, J., & Guo, Y. (2022). Removal behavior and mechanisms of U(VI) in aqueous solution using aloe vera biochar with highly developed porous structure. Journal of Radioanalytical and Nuclear Chemistry, 331(5), 2273–2283. 
Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environmental Science and Technology, 52(9), 5027–5047. 
Yılmaz, Ş., Ecer, Ü., & Şahan, T. (2023). Synthesis, characterization and application of iron-supported activated carbon derived from Aloe vera leaves to improve anaerobic digestion of food waste: An optimization approach. Journal of Environmental Chemical Engineering, 11(5).