An Optimization Model for Utilizing Green Road Corridors and Urban Parks to Enhance Tree Absorption of Motor Vehicle CO2 emissions in Pekanbaru City, Indonesia

Document Type : Original Research Paper

Authors

1 Department of Environmental Science, Riau University, Indonesia

2 Department of Civil Engineering, Faculty of Engineering, Riau University, Indonesia

3 Department of Occupational Safety And Health, Faculty of Health Sciences, Ibnu Sina University, Batam, Indonesia

10.22059/poll.2024.372985.2268

Abstract

The surge in CO2 emissions from vehicles has precipitated a rise in global temperatures, instigating the greenhouse effect. This study draws on case studies from prominent Indonesian cities, including Jakarta, Surabaya, and Manado, highlighting a notable dissonance between the capacity of plants to absorb carbon and the volume emitted. Green Road Corridors and Urban Forests assume multifaceted roles in urban ecosystems, functioning as barriers, filters, absorbers, and producers, contributing to air quality, noise reduction, and environmental preservation. Employing linear programming as a mathematical programming branch, this research integrates diverse factors into decision-making models. It strives to achieve optimal solutions pertaining to the selection and quantity of trees for maximizing CO2 absorption resulting from motor vehicle activities in Pekanbaru City, specifically along Subrantas Street and Harapan Raya Street. Land cover classifications in Pekanbaru City encompass green spaces, buildings, open areas, undergrowth, water bodies, and non-private zones. The optimization model, targeting 10% utilization of the Jalan Subrantas urban park area, demonstrates a significant CO2 absorption of 827,976 tons/ha and an O2 surplus of 176,207.72 tons/ha. Conversely, full utilization of the Jalan Sudirman Urban Park area yields a CO2 absorption of 206,982 tons/ha and an O2 surplus of 9036.63 tons/ha. These optimized outcomes lay a foundation for potential carbon tax development within the urban transportation sector of Pekanbaru, with envisaged implementation by the year 2040.

Keywords

Main Subjects


Anguluri, R., & Narayanan, P. (2017). Role of green space in urban planning: Outlook towards smart cities. Urban Forestry and Urban Greening, 25, 58–65. https://doi.org/10.1016/j.ufug.2017.04.007
Ariluoma, M., Ottelin, J., Hautamäki, R., Tuhkanen, E. M., & Mänttäri, M. (2021). Carbon sequestration and storage potential of urban green in residential yards: A case study from Helsinki. Urban Forestry and Urban Greening, 57. https://doi.org/10.1016/j.ufug.2020.126939
Balogun, H. A., Rantala, A. K., Antikainen, H., Siddika, N., Amegah, A. K., Ryti, N. R. I., Kukkonen, J., Sofiev, M., Jaakkola, M. S., & Jaakkola, J. J. K. (2020). Effects of air pollution on the risk of low birth weight in a cold climate. Applied Sciences (Switzerland), 10(18), 1–18. https://doi.org/10.3390/app10186399
Betancourt, C., Hagemeier, B., Schröder, S., & Schultz, M. G. (2021). Context aware benchmarking and tuning of a TByte-scale air quality database and web service. Earth Science Informatics, 14(3), 1597–1607. https://doi.org/10.1007/s12145-021-00631-4
Bikis, A. (2023). Urban Air Pollution and Greenness in Relation to Public Health. Journal of Environmental and Public Health, 2023(X), 1–18. https://doi.org/10.1155/2023/8516622
Birim, S., Kazancoglu, I., Mangla, S. K., Kahraman, A., & Kazancoglu, Y. (2022). The derived demand for advertising expenses and implications on sustainability: a comparative study using deep learning and traditional machine learning methods. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04429-x
Brauer, M., Hoek, G., Smit, H. A., Jongste, J. C. De, Gerritsen, J., Postma, D. S., Kerkhof, M., & Brunekreef, B. (2007). Air pollution and development of asthma, allergy and infections in a birth cohort. 29(5), 879–888. https://doi.org/10.1183/09031936.00083406
Carmichael, G. R., Sandu, A., Chai, T., Daescu, D. N., Constantinescu, E. M., & Tang, Y. (2008). Predicting air quality: Improvements through advanced methods to integrate models and measurements. Journal of Computational Physics, 227(7), 3540–3571. https://doi.org/10.1016/j.jcp.2007.02.024
Cheng, Y., Zhang, J., Wei, W., & Zhao, B. (2021). Effects of urban parks on residents’ expressed happiness before and during the COVID-19 pandemic. Landscape and Urban Planning, 212(December 2020), 104118. https://doi.org/10.1016/j.landurbplan.2021.104118
Fan, M., Gu, Z., Li, W., Zhou, D., & Yu, C. W. (2022). Integration of a large green corridor with an underground complex – a low carbon building solution for urban climate revival. Indoor and Built Environment, 31(4), 872–877. https://doi.org/10.1177/1420326X211067607
Fodha, M., & Zaghdoud, O. (2010). Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy, 38(2), 1150–1156. https://doi.org/10.1016/j.enpol.2009.11.002
Hossain, S. (2012). An econometric analysis for CO 2 emissions, energy consumption, economic growth, foreign trade and urbanization of Japan. DOI:10.4236/lce.2012.323013.
Jay Heizer, B. R. (2014). EDITION O P E R AT I O N S Sustainability and Supply Chain Management.
Liang, C., Chen, Y., Wu, M., Wang, K., Zhang, W., Gan, Y., Huang, H., Chen, J., Xia, Y., Zhang, J., Zheng, S., & Pan, H. (2021). Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nature Communications, 12(1), 1–9. https://doi.org/10.1038/s41467-020-20380-0
Liu, Z., Lin, Y., De Meulder, B., & Wang, S. (2020). Heterogeneous landscapes of urban greenways in Shenzhen: Traffic impact, corridor width and land use. Urban Forestry and Urban Greening, 55(October 2019), 126785. https://doi.org/10.1016/j.ufug.2020.126785
McConnell, R., Berhane, K., Yao, L., Jerrett, M., Lurmann, F., Gilliland, F., Künzli, N., Gauderman, J., Avol, E., Thomas, D., & Peters, J. (2006). Traffic, susceptibility, and childhood asthma. Environmental Health Perspectives, 114(5), 766–772. https://doi.org/10.1289/ehp.8594
Morgenstern, V., Zutavern, A., Cyrys, J., Brockow, I., Koletzko, S., Krämer, U., Behrendt, H., Herbarth, O., Von Berg, A., Bauer, C. P., Wichmann, H. E., Heinrich, J., Bolte, G., Belcredi, P., Jacob, B., Schoetzau, A., Mosetter, M., Schindler, J., Höhnke, A., … Schäfer, T. (2008). Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. American Journal of Respiratory and Critical Care Medicine, 177(12), 1331–1337. https://doi.org/10.1164/rccm.200701-036OC
Morley, D. W., & Gulliver, J. (2018). A land use regression variable generation, modelling and prediction tool for air pollution exposure assessment. Environmental Modelling and Software, 105, 17–23. https://doi.org/10.1016/j.envsoft.2018.03.030
Nocito, F., & Dibenedetto, A. (2020). Atmospheric CO2 mitigation technologies: carbon capture utilization and storage. Current Opinion in Green and Sustainable Chemistry, 21, 34–43. https://doi.org/10.1016/j.cogsc.2019.10.002
Nugroho, H. Y. S. H., Nurfatriani, F., Indrajaya, Y., Yuwati, T. W., Ekawati, S., Salminah, M., Gunawan, H., Subarudi, S., Sallata, M. K., Allo, M. K., Muin, N., Isnan, W., Putri, I. A. S. L. P., Prayudyaningsih, R., Ansari, F., Siarudin, M., Setiawan, O., & Baral, H. (2022). Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912124
Olorunfemi, I. E., Olufayo, A. A., Fasinmirin, J. T., & Komolafe, A. A. (2022). Dynamics of land use land cover and its impact on carbon stocks in Sub-Saharan Africa: an overview. In Environment, Development and Sustainability (Vol. 24, Issue 1). https://doi.org/10.1007/s10668-021-01484-z
Olvera-García, M. Á., Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., & Hernández-Bautista, I. (2016). Air quality assessment using a weighted Fuzzy Inference System. Ecological Informatics, 33, 57–74. https://doi.org/10.1016/j.ecoinf.2016.04.005
Reames, T. G., & Bravo, M. A. (2019). People, place and pollution: Investigating relationships between air quality perceptions, health concerns, exposure, and individual- and area-level characteristics. Environment International, 122(November), 244–255. https://doi.org/10.1016/j.envint.2018.11.013
Relkar, R. R. (2022). Prediction of Air Quality Index Using Supervised Machine Learning. International Journal for Research in Applied Science and Engineering Technology, 10(6), 1371–1382. https://doi.org/10.22214/ijraset.2022.43993
Sunyer, J., Dadvand, P., Foraster, M., Gilliland, F., & Nawrot, T. (2021). Environment and the COVID-19 pandemic. Environmental Research, 195, 2020–2022. https://doi.org/10.1016/j.envres.2021.110819
Tuśnio, N., Fichna, J., Nowakowski, P., & Tofiło, P. (2020). Air pollution associates with cancer incidences in Poland. Applied Sciences (Switzerland), 10(21), 1–13. https://doi.org/10.3390/app10217489
van der Heijden, K. (2021). Capacity decisions and production planning in batch production environment with setup decisions.
Wang, Q., & Huang, R. (2021). The impact of COVID-19 pandemic on sustainable development goals – A survey. Environmental Research, 202(April), 111637. https://doi.org/10.1016/j.envres.2021.111637
Wang, Q., Li, S., Li, R., & Jiang, F. (2022). Underestimated impact of the COVID-19 on carbon emission reduction in developing countries – A novel assessment based on scenario analysis. Environmental Research, 204(August 2021). https://doi.org/10.1016/j.envres.2021.111990
Wang, Q., & Su, M. (2020). A preliminary assessment of the impact of COVID-19 on environment – A case study of China. Science of the Total Environment, 728, 138915. https://doi.org/10.1016/j.scitotenv.2020.138915
Xie, J., Luo, S., Furuya, K., & Sun, D. (2020). Urban parks as green buffers during the COVID-19 pandemic. Sustainability (Switzerland), 12(17), 1–17. https://doi.org/10.3390/SU12176751
Xing, H., Zhu, L., Chen, B., Niu, J., Li, X., Feng, Y., & Fang, W. (2022). Spatial and temporal changes analysis of air quality before and after the COVID-19 in Shandong Province, China. Earth Science Informatics, 15(2), 863–876. https://doi.org/10.1007/s12145-021-00739-7