Phytoremediation of Pyrene by the Aquatic Plant Azolla pinnata

Document Type : Original Research Paper

Authors

1 Biology Department, College of Science, University of Al-Qadisiyah, Iraq

2 Biology Department, College of Education, University of Al-Qadisiyah, Iraq

10.22059/poll.2024.374436.2310

Abstract

The current study tested the ability of the aquatic plant Azolla pinnata to remove the pyrene and determine the effect of Pyrene on the pigments (chlorophyll a, b, and carotenoids) and antioxidant parameters (CAT, SOD, MDA and, ROS) in the plant. The plant was exposed to different concentrations of Pyrene (1,5,10,15,25, and 50 mg/l) for 14 days. The results showed that the high removal rate of pyrene reached 99% for 25 and 50 mg/l of pyrene on the 14th day of the experiment, while the lowest removal rate was 42.1% for 1 mg/l on the third day.
The results showed the lowest values of total chlorophyll, chlorophyll a and carotenoids were 0.55, 0.25, and 0.433 μg/g recorded at 50 ppm respectively. While chlorophyll b recorded a low value of 0.32 μg/g at 25 mg/l, the highest concentration of these pigments was registered in the control group. Also, the results showed a gradual increase in antioxidant values compared to the control group, recording the highest values of 0.2873 and 1.04 U/g at 50 ppm and the lowest value of CAT and SOD at 5ppm, compared to the control group. Also, the study recorded a gradual increase in ROS and MDA values with increasing concentrations of pyrene, the highest value was 1.6367 and 14.4433 µmole/g for ROS and MDA at (50ppm), whereas the lowest value was recorded at 5 ppm compared to the control group. Statistical analysis at (p˂0.05) showed significant differences between all the interactions.

Keywords

Main Subjects


AbdulRada, N. J., Hussain, K. I., & Ali, A. A. (2014). Separation and determination of poly aromatic hydrocarbons in vegetables samples in Baghdad city using HPLC Technique. Ibn Al-Haitham Journal For Pure and Applied Sciences, 27(1). 
Ahn, C. K., Woo, S. H., & Park, J. M. (2010). Surface solubilization of phenanthrene by surfactant sorbed on soils with different organic matter contents. Journal of hazardous materials, 177(1-3), 799-806. 
Al-Baldawi, I. A., Abdullah, S. R. S., Suja, F., Anuar, N., & Idris, M. (2012). Preliminary test of hydrocarbon exposure on Azolla pinnata in phytoremediation process. Int. Conf. Environ. Energy Biotechnol. IPCBEE, 
Alwan, S. W. (2015). The Bioaccumulation and Toxic Effect of Pyrene and Phenanthrene in Hydrilla verticillata (LF) Royal. journal of kerbala university, 11(2), 113-121. 
Alzurfi, S. K. L., Alasedi, K. K., & Abdulraheem, N. I. (2019). Effect Different Concentrations of Crude Oil on the Pigment content and protein content of Hydrilla verticillata Plant. Iraqi Journal of Science, 2141-2148. 
Arikan, B., Yildiztugay, E., & Ozfidan-Konakci, C. (2023). Responses of salicylic acid encapsulation on growth, photosynthetic attributes and ROS scavenging system in Lactuca sativa exposed to polycyclic aromatic hydrocarbon pollution. Plant Physiology and Biochemistry, 203, 108026. 
Atta, A. M., Mohamed, N. H., Hegazy, A. K., Moustafa, Y. M., Mohamed, R. R., Safwat, G., & Diab, A. A. (2020). Green technology for remediation of water polluted with petroleum crude oil: Using of Eichhornia crassipes (Mart.) Solms combined with magnetic nanoparticles capped with myrrh resources of Saudi Arabia. Nanomaterials, 10(2), 262. 
Cerniglia, C. E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current opinion in biotechnology, 4(3), 331-338. 
Chen, Y.-C., Banks, M. K., & Schwab, A. P. (2003). Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). Environmental science & technology, 37(24), 5778-5782. 
Cohen, M. F., Williams, J., & Yamasaki, H. (2002). Biodegradation of diesel fuel by an Azolla-derived bacterial consortium. Journal of Environmental Science and Health, Part A, 37(9), 1593-1606. 
Dhir, B., Sharmila, P., & Saradhi, P. P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39(9), 754-781. 
Duxbury, C. L., Dixon, D. G., & Greenberg, B. M. (1997). Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environmental Toxicology and Chemistry: An International Journal, 16(8), 1739-1748. 
Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry, 38(12), 1103-1111. 
Eribo, O., & Kadiri, M. (2016). Growth performance and phytoremediation ability of Azolla pinnata in produced water. Journal of Applied Sciences and Environmental Management, 20(4), 1053-1057. 
Gomes, M. P., de Brito, J. C. M., Carneiro, M. M. L. C., da Cunha, M. R. R., Garcia, Q. S., & Figueredo, C. C. (2018). Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization. Environmental Pollution, 232, 293-299. 
González, A., Espinoza, D., Vidal, C., & Moenne, A. (2020). Benzopyrene induces oxidative stress and increases expression and activities of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca (Chlorophyta). Planta, 252, 1-13. 
Guo, X., Zhang, W., Gu, J., Chen, F., & Yang, Q. (2021). The determination of the level, source, and risk of polycyclic aromatic hydrocarbon content in traditional Chinese medicines using a QuEChERS based extraction and HPLC-UV-FLD analysis. Journal of Liquid Chromatography & Related Technologies, 44(3-4), 210-219. 
Hadwan, M. H., & kadhum Ali, S. (2018). New spectrophotometric assay for assessments of catalase activity in biological samples. Analytical biochemistry, 542, 29-33. 
Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. Crop stress and its management: perspectives and strategies, 261-315. 
Hegazy, H. G. (2011). Ameliorative effects of ginger and α-lipoic acid on oxidative stress and inflammation in senile female rats. Afr J Pharm Pharmacol, 5(8), 1096-1105. 
Houshani, M., Salehi-Lisar, S. Y., Motafakkerazad, R., & Movafeghi, A. (2019). Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.). Environmental Science and Pollution Research, 26, 9938-9944. 
Indira, D., Reddy, K., Suresh, J., Naidu, V., & Ravi, A. (2014). Optimum conditions for culturing of Azolla (Azolla pinnata). Int. J. Adv. Res. Biol. Sci, 1, 87-89. 
Jeffrey, S. t., & Humphrey, G. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und physiologie der pflanzen, 167(2), 191-194. 
Jin, D., Jiang, X., Jing, X., & Ou, Z. (2007). Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene. Journal of hazardous materials, 144(1-2), 215-221. 
Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a] pyrene. International biodeterioration & biodegradation, 45(1-2), 57-88. 
Kaur, G., Sandhu, P. K., & Kaushal, S. (2022). Pros and Cons of Phytoremediation. CORVETTE PRESS, 170. 
Kollah, B., Patra, A. K., & Mohanty, S. R. (2016). Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environmental Science and Pollution Research, 23, 4358-4369. 
Kosesakal, T. (2018). Assessment of the biodegradation capacity of Azolla on polycyclic aromatic hydrocarbons in crude oil. Global Nest J, 20(3), 27-32. 
Kumari, R., Ojha, M., Saini, V., & Sharma, S. (2017). Effect of Azolla supplementation on proximate composition and digestibility of Labeo rohita (Ham.) fingerlings. Journal of Entomology and Zoology, 5, 715-718. 
Latif, A., Abbas, A., Iqbal, J., Azeem, M., Asghar, W., Ullah, R., Bilal, M., Arsalan, M., Khan, M., & Latif, R. (2023). Remediation of environmental contaminants through phytotechnology. Water, Air, & Soil Pollution, 234(3), 139. 
Li, X., Liu, J., Chen, F., Cheng, Y., Wang, Y., Li, A., Zhai, F., & Sun, Z. (2024). Phytotoxity of polycyclic aromatic hydrocarbons to Salix Viminalis L. Pak. J. Bot, 56(2), 703-710. 
Liste, H.-H., & Alexander, M. (2000). Plant-promoted pyrene degradation in soil. Chemosphere, 40(1), 7-10. 
Marmiroli, N., Marmiroli, M., & Maestri, E. (2006). Phytoremediation and phytotechnologies: a review for the present and the future. Soil and water pollution monitoring, protection and remediation, 403-416. 
McGlynn, S. E., & Livingston, R. J. (1997). The distribution of polynuclear aromatic hydrocarbons between aquatic plants and sediments. International journal of quantum chemistry, 64(3), 271-283. 
Meudec, A., Dussauze, J., Deslandes, E., & Poupart, N. (2006). Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments. Chemosphere, 65(3), 474-481. 
Miranda, A., Muradov, N., Gujar, A., Stevenson, T., Nugegoda, D., Ball, A., & Mouradov, A. (2014). Application of aquatic plants for the treatment of selenium-rich mining wastewater and production of renewable fuels and petrochemicals. Journal of Sustainable Bioenergy Systems, 4(1), 97-112. 
Mostafa, A. A., Hafez, R. M., Hegazy, A. K., Fattah, A. M. A.-E., Mohamed, N. H., Mustafa, Y. M., Gobouri, A. A., & Azab, E. (2021). Variations of structural and functional traits of Azolla pinnata R. Br. in response to crude oil pollution in arid regions. Sustainability, 13(4), 2142. 
Olaranont, Y., Stewart, A. B., & Traiperm, P. (2021). Effects of crude oil on plant growth and leaf anatomical structures in a common coastal plant. International Journal of Phytoremediation, 23(2), 162-170. 
Romero, M., Martin-Cuadrado, A.-B., Roca-Rivada, A., Cabello, A. M., & Otero, A. (2011). Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS microbiology ecology, 75(2), 205-217. 
Saleh, M. M., Salman, J. M., & Almamoori, A. M. (2017). Bioremediation of polycyclic aromatic hydrocarbons by using Zea mays and inoculating with bacteria (Pseudomonas aeruginosa) and fungi (Penicillium expansum). Mesopotamia Environmental Journal (mesop. environ. j) ISSN: 2410-2598, 3(3), 10-25. 
Salehi-Lisar, S. Y., & Deljoo, S. (2015). The physiological effect of fluorene on Triticum aestivum, Medicago sativa, and Helianthus annus. Cogent Food & Agriculture, 1(1), 1020189. 
Song, H., Wang, Y.-S., Sun, C.-C., Wu, M.-L., Peng, Y.-L., Deng, C., & Li, Q. P. (2011). Effects of polycyclic aromatic hydrocarbons exposure on antioxidant system activities and proline content in Kandelia candel. Oceanological and hydrobiological studies, 40, 9-18. 
Sood, A., Uniyal, P. L., Prasanna, R., & Ahluwalia, A. S. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio, 41, 122-137. 
Stephenie, S., Chang, Y. P., Gnanasekaran, A., Esa, N. M., & Gnanaraj, C. (2020). An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. Journal of Functional Foods, 68, 103917. 
Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research, 22, 598-608.