Aleksić, S., Žgajnar Gotvajn, A., Premzl, K., Kolar, M., & Turk, S.Š., (2021). Ozonation of amoxicillin and ciprofloxacin in model hospital wastewater to increase biotreatability. Antibiotics, 10(11), 1407.
Aranda, F.L., & Rivas, B.L., (2022). Removal of AMX through different methods, emphasizing removal by biopolymers and its derivatives. An overview. J. Chil. Chem. Soc. 67(3), 5643-5655.
Ay, F., & Kargi, F., (2010). Advanced oxidation of AMX by Fenton’s reagent treatment. J. Hazard. Mater. 179(1-3), 622-627.
Babuponnusami, A., & Muthukumar, K., (2012). Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. J. Chem. Eng. 183, 1-9.
Basturk, I., Varank, G., Murat-Hocaoglu, S., Yazici-Guvenc, S., Can-Güven, E., Oktem-Olgun, E. E., & Canli, O., (2021). Simultaneous degradation of cephalexin, ciprofloxacin, and clarithromycin from medical laboratory wastewater by electro-Fenton process. J. Environ. Chem. Eng. 9(1), 104666.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76(5), 965-977.
Brillas, E., (2020). A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere. 250, p.126198.
Deng, F., Olvera-Vargas, H., Garcia-Rodriguez, O., Qiu, S., Ma, F., Chen, Z. & Lefebvre, O., (2020). Unconventional electro-Fenton process operating at a wide pH range with Ni foam cathode and tripolyphosphate electrolyte. J. Hazard. Mater. 396, p.122641.
Eslami, A., Asadi, A., Meserghani, M. & Bahrami, H. (2016). Optimization of sonochemical degradation of AMX by sulfate radicals in aqueous solution using response surface methodology (RSM). J. Mol. Liq. 222, 739-744.
He, H., & Zhou, Z. (2017). Electro-Fenton process for water and wastewater treatment. Crit. Rev. Environ. Sci. Technol. 47(21), 2100-2131.
Jiang, B. (2022). An Eco-friendly Iron Cathode Electro-Fenton System Coupled With a pH-Regulation Electrolysis Cell for p-nitrophenol Degradation. Front. Chem. 9, 1225.
Kadji, H., Yahiaoui, I., Garti, Z., Amrane, A. & Aissani-Benissad, F., (2021). Kinetic degradation of AMX by using the electro-Fenton process in the presence of a graphite rods from used batteries. Chin. J. Chem. Eng. 32, pp.183-190.
Kümmerer, K., (2009). Antibiotics in the aquatic environment–a review–part I. Chemosphere. 75(4), pp.417-434.
Lama, G., Meijide, J., Sanromán, A., & Pazos, M. (2022). Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts. 12(3), 344.
Matyszczak, G., Krzyczkowska, K. & Fidler, A. (2020). A novel, two-electron catalysts for the electro-Fenton process. J. Water. Process. Eng. 36: 101242.
Messele, S. A., Bengoa, C., Stüber, F. E., Giralt, J., Fortuny, A., Fabregat, A., & Font, J. (2019). Enhanced degradation of phenol by a fenton-like system (Fe/EDTA/H2O2) at circumneutral pH. Catalysts. 9(5), 474.
Messele, S. A., Soares, O. S. G. P., Órfão, J. J. M., Stüber, F., Bengoa, C., Fortuny, A., & Font, J. (2014). Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol. Appl. Catal. B: Environ.154, 329-338.
Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C. & Fatta-Kassinos, D.J.W.R. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res. 47(3), pp.957-995.
Panizza, M., & Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water Res. 43(2), 339-344.
Salari, M. (2022). Optimization by Box–Behnken Design and Synthesis of Magnetite Nanoparticles for Removal of the Antibiotic from an Aqueous Phase. Adsorpt. Sci. Technol.
Salari, M., Nikoo, M. R., Al-Mamun, A., Rakhshandehroo, G.R. & Mooselu, M. G. (2022). Optimizing Fenton-like process, homogeneous at neutral pH for ciprofloxacin degradation: Comparing RSM-CCD and ANN-GA. J. Environ. Manage. 317, 115469.
Salari, M., Rakhshandehroo, G. R., Nikoo, M. R., Zerafat, M. M., & Mooselu, M. G. (2021). Optimal degradation of Ciprofloxacin in a heterogeneous Fenton-like process using (δ-FeOOH)/MWCNTs nanocomposite. Environ. Technol. Innov. 23, 101625.
Salari, M., Rakhshandehroo, G.R. & Nikoo, M. R. (2018). Degradation of ciprofloxacin antibiotic by Homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products. Chemosphere, 206, 157-167.
Shokoohi, R., Ghobadi, N., Godini, K., Hadi, M., & Atashzaban, Z. (2020). Antibiotic detection in a hospital wastewater and comparison of their removal rate by activated sludge and earthworm-based vermifilteration: Environmental risk assessment. Process Saf. Environ. Prot.134, 169-177.
Shoorangiz, M., Nikoo, M. R., Salari, M., Rakhshandehroo, G. R., & Sadegh, M. (2019). Optimized electro-Fenton process with sacrificial stainless steel anode for degradation/mineralization of ciprofloxacin. Process Saf. Environ. Prot. 132, 340-350.
Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms. 9(10), 2041.
Varindani, A., Anantha Singh, T.S., Menon, P. and Nidheesh, P.V. (2021). Chelate-modified Electro-Fenton process for mixed industrial wastewater treatment. Environ. Technol. pp.1-10.
Verma, A., & Hait, S. (2019). Chelating extraction of metals from e-waste using diethylene triamine pentaacetic acid. Process Saf. Environ. Prot.121, 1-11.
Yoosefian, M., Ahmadzadeh, S., Aghasi, M. & Dolatabadi, M. (2017). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. J. Mol. Liq. 225, 544-553.
Zhang, J., Zheng, C., Dai, Y., He, C., Liu, H. & Chai, S. (2021). Efficient degradation of AMX by scaled-up electro-Fenton process: attenuation of toxicity and decomposition mechanism. Electrochim. Acta. 381, 138274.
Zhang, X..H., Xu, Y.B., He, X .L., Huang, L., Ling, J.Y., Zheng. L., & Du, Q.P. (2016). Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environ Pollut. 218, 1255-1261.
Zhang, Y., Zhou, M., (2019). A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J. Hazard. Mater. 362, 436-450.