Exploring Sustainable Waste Solutions: Evaluating Mixing Ratios in Agitated Pile Composting with Sugarcane Agro-Industrial Waste

Document Type : Original Research Paper

Authors

1 Department of Civil Engineering, SV National Institute of Technology, Surat, Gujarat, India 395007

2 Civil Engineering Department, Sharda University, Greater Noida, U.P., India 201310

3 Civil Engineering Department, Lakshmi Narain College of Technology, Bhopal, India 462021

10.22059/poll.2024.376557.2373

Abstract

This study focused deeply on sustainable solid waste management practices, specifically focusing on the co-composting of various organic materials such as sugarcane leaves/ trash, sugarcane bagasse, food waste, cow dung, and press mud (generated from the sugarcane industry). Five trapezoidal shape agitated piles (heap) were prepared with various combinations (Trials 1 to 5). This study investigates the dynamic changes in critical parameters while composting and their implications for compost quality and maturity. The results showed that the percentage increase in total nitrogen (1.76-2.24%, 1.93-2.23%), phosphorus (1.35-3.52%, 1.18-2.62%), and potassium content (4.5-8.7%, 4.7-8.9%) in trial 3 and 5, which underscore their roles in enhancing soil fertility and crop productivity. The decline in carbon-to-nitrogen ratios in trial 3 (45.5-26.3) and trial 5 (46.6-24.3) correlates with the growth of lignocellulose-degrading bacteria, facilitating humic substance formation critical for compost stability. Lignocellulosic degradation, evidenced by cellulose, hemicellulose, and lignin content changes, further emphasises its importance in compost maturation. Additionally, reductions in CO2 evolution rate (20.9-3.8%, 22.1-3.9%) and volatile solids (81.9-43.8%, 83.8-43.8%) content in trials 3 and 5, reflect microbial activity and compost stabilisation. Trial 3 and 5 were the suitable combinations for the sugarcane agro-industrial waste composting. These findings highlight that effective waste management enhances agricultural productivity and reduces environmental impact by improving soil health using of composted sugarcane waste.

Keywords

Main Subjects


Adhikari, B. K., Barrington, S., Martinez, J., & King, S. (2009). Effectiveness of three bulking agents for food waste composting. Waste Manag., 29(1); 197–203. 
Ansari, M., Zafar, U., Ejaz, U., Sohail, M., Pirzada, A., & Aman, A. (2021). Comparison of composting of chemically pretreated and fermented sugarcane bagasse for zero-waste biorefinery. J. Mater. Cycles Waste Manag., 23(3); 911–921.
Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Org. Agric., 8(2); 141–158. 
Byakodi, A. S., & Babu, B. T. S. (2022). Aerobic Composting of Sugar Pressmud with Stabilized Spentwash and selected Microbial Consortium. Eurobiotech J., 6(1); 32–39. 
Cáceres, R., MaliƄska, K., & Marfà, O. (2018). Nitrification within composting: A review. Waste Manag., 72; 119–137. 
Calcino, D. V, Schroeder, B. L., & Hurney, A. P. (2010). Extension and adoption of the’SIX EASY STEPS’nutrient management program in sugarcane production in north Queensland. Proc. Int. Soc. Sugar Cane Technol., 27; 1-10.
Chatterjee, B., & Mazumder, D. (2016). Anaerobic digestion for the stabilization of the organic fraction of municipal solid waste: A review. Environ. Rev., 24 (4); 426-459
Dhanushkodi, V., Hanif, N. A., Amuthaselvi, G., & Easwaran, S. (2019). In-situ sugarcane trash composting: A boon for soil fertility and cane yield (Saccum officiharnarum). J. Pharmacogn. Phytochem., 8(2S); 207–209.
Erdocia, X., Hernández-Ramos, F., Morales, A., Izaguirre, N., de Hoyos-Martínez, P. L., & Labidi, J. (2021). Lignin extraction and isolation methods. In Lignin-based Materials for Biomedical Applications: Preparation, Characterization and Implementation. Elsev., 61–104. 
Fog, K. (1988). The effect of added nitrogen on the rate of decomposition of organic matter. Biol. Rev., 63(3); 433–462. 
Fornes, F., Mendoza-Hernández, D., García-de-la-Fuente, R., Abad, M., & Belda, R. M. (2012). Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour. Technol., 118; 296–305. 
Gea, T., Barrena, R., Artola, A., & Sánchez, A. (2004). Monitoring the biological activity of the composting process: Oxygen uptake rate (OUR), respirometric index (RI) and respiratory quotient (RQ). Biotechnol. Bioeng., 88(4); 520–527. 
Ghanney, P., Qiu, H., Anning, D. K., Yang, H., Wang, Y., & Kugbe, J. X. (2021). Moisture-induced pattern of gases and physicochemical indices in corn straw and cow manure composting. Appl. Sci., 11(18); 8493. 
Ghanney, P., Yeboah, S., Anning, D. K., Yang, H., Wang, Y., & Qiu, H. (2023). Moisture-Induced Effects on Lignocellulosic and Humification Fractions in Aerobically Composted Straw and Manure. Fermentation, 9(6); 551. 
Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures and some applications). Agric. Handb., US Agricultural Research Service., 379
Gondek, M., Weindorf, D. C., Thiel, C., & Kleinheinz, G. (2020). Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost Sci. Util., 28(2); 59–75. 
Hernández, T., Chocano, C., Moreno, J.-L., & García, C. (2016). Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil Tillage Res., 160; 14–22.
Ho, T. T. K., Tra, V. T., Le, T. H., Nguyen, N. K. Q., Tran, C. S., Nguyen, P. T., Vo, T. D. H., Thai, V. N., & Bui, X. T. (2022). Compost to improve sustainable soil cultivation and crop productivity. Case Stud. Chem. Environ. Eng., 6; 100211. 
Hoang, H. G., Thuy, B. T. P., Lin, C., Vo, D. V. N., Tran, H. T., Bahari, M. B., Le, V. G., & Vu, C. T. (2022). The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere, 300; 134514. 
Hou, J.-Y., Liu, H.-T., Wang, L.-X., & Zhang, Z.-L. (2024). Novel perspective on qualitative assessment of swine manure compost maturity using organic carbon density fractions. Bioresour. Techno., 395.
Houfani, A. A., Anders, N., Spiess, A. C., Baldrian, P., & Benallaoua, S. (2020). Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review. Biomass Bioenergy, 134, 105481.
Jain, M. S., Daga, M., & Kalamdhad, A. S. (2019). Variation in the key indicators during composting of municipal solid organic wastes. Sustain. Environ. Res., 1(1); 1–8. 
Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. J. Anim. Sci.
, 73(8); 2483–2492.
Li, Y., & Li, W. (2015). Nitrogen transformations and losses during composting of sewage sludge with acidified sawdust in a laboratory reactor. Waste Manag. Res., 33(2); 139–145. 
Lim, T. J., Spokas, K. A., Feyereisen, G., & Novak, J. M. (2016). Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere, 142; 136–144.
Mukesh, M., Gujar, G., & Sodhi, M. (2022). Livestock sector: an integral component for country’s food and social security. Adv. Anim. Experiment. Model.., 341–351.
Oazana, S., Varma, V. S., Saadi, I., Sharma, D., Hanan, A., Medina, S., Avidov, R., Grinshpon, Y., Rosenfeld, L., & Gross, A. (2020). High-rate stabilization and associated air emissions prospected during on-site in-vessel sewage sludge composting. Bioresour. Technol. Rep., 11; 100543.
Paez, L. A., Garcia, J. F., Parra, J. D., & Jacome, L. L. (2022). Effect of phosphoric rock on the chemical, microbiological and enzymatic quality of poultry, equine and cattle manure compost mix. Int. J. Recycl. Org. Waste Agric., 11(3); 385–398. 
Peces, M., Astals, S., & Mata-Alvarez, J. (2014). Assessing total and volatile solids in municipal solid waste samples. Environ. Technol., 35(24); 3041–3046. 
Poornima, S., Dadi, M., Subash, S., Manikandan, S., Karthik, V., Deena, S. R., Balachandar, R., Kumaran, S. K. N., & Subbaiya, R. (2024). Review on Advances in Toxic Pollutants Remediation by Solid Waste Composting and Vermicomposting. Sci. Afr., 23; e02100.
Powar, R. V., Mehetre, S. A., Powar, T. R., & Patil, S. B. (2022). End-Use Applications of Sugarcane Trash: A Comprehensive Review. Sugar Tech., 24(3); 699–714. 
Qiu, Z., Li, M., Song, L., Wang, C., Yang, S., Yan, Z., & Wang, Y. (2021). Study on nitrogen-retaining microbial agent to reduce nitrogen loss during chicken manure composting and nitrogen transformation mechanism. J. Clean. Prod., 285; 124813.
Rahayu, F., Nugraheni, S. D., Diana, N. E., Santoso, B., Wijanarko, A., & Hariyono, B. (2022). The potential of new bio-decomposers for composting sugarcane waste. IOP Conference Series: Earth Environ. Sci., 974(1). 
Rastogi, M., Nandal, M., & Khosla, B. (2020). Microbes as vital additives for solid waste composting. Heliyon., 6(2).
Raza, S., Munir, N., Naz, S., Ahmed, J., & Ameen, A. (2017). Effect of pH during composting of municipal solid waste. Pakistan Journal of Scientific and Industrial Research Series A: Phys. Sci., 60(2); 114–116.
Rao, J. N., & Parsai, T. (2023). A comprehensive review on the decentralized composting systems for household biodegradable waste management. J. Environ. Manage., 345, 118824.
Sarika, D., Singh, J., Prasad, R., Vishan, I., Varma, V. S., & Kalamdhad, A. S. (2014). Study of physico-chemical and biochemical parameters during rotary drum composting of water hyacinth. Int. J. Recycl. Org. Waste Agric., 3(3); 1–10. 
Sharma, D., Prasad, R., Patel, B., & Parashar, C. K. (2022). Biotransformation of sludges from dairy and sugarcane industries through vermicomposting using the epigeic earthworm Eisenia fetida. Int. J. Recycl. Org. Waste Agric., 11(2); 165–175.
Soto-Paz, J., Gea, T., Alfonso-Morales, W., Caicedo-Bravo, E., Oviedo-Ocaña, E. R., Manyoma-Velásquez, P. C., & Torres-Lozada, P. (2021). Co-composting of Biowaste: Simultaneous Optimization of the Process and Final Product Quality Using Simulation and Optimisation Tools. Waste Biomass Valor., 12(8); 4489–4502. 
Srinivasan, R., Rao, K. J., Reza, S. K., Padua, S., Dinesh, D., & Dharumarajan, S. (2016). Influence of inorganic fertilizers and organic amendments on plant nutrients and soil enzyme activities under incubation. Int. J. Bio-Resour. Stress Manage., 7; 924–932.
Stegenta-Dabrowska, S., Sobieraj, K., Koziel, J. A., Bieniek, J., & Bialowiec, A. (2020). Kinetics of biotic and abiotic CO production during the initial phase of biowaste composting. Energies., 13(20); 1-22. 
Stoffella, P. J., & Graetz, D. A. (2000). Utilization of sugarcane compost as a soil amendment in a tomato production system. Compost Sci. Util., 8(3); 210–214.
Sung, J., Kim, W., Oh, T.-K., & So, Y.-S. (2023). Nitrogen (N) use efficiency and yield in rice under varying types and rates of N source: chemical fertilizer, livestock manure compost and food waste-livestock manure compost. Appl. Biol. Chem., 66(1). 
Updegraff, D. M. (1969). Semimicro determination of cellulose inbiological materials. Anal. Biochem., 32(3); 420–424. 
Wakeel, A., Gul, M., & Zörb, C. (2016). Potassium for sustainable agriculture. In Soil Science: Agric. Environ. Perspect., 159–182. 
Zainudin, M. H. M., Zulkarnain, A., Azmi, A. S., Muniandy, S., Sakai, K., Shirai, Y., & Hassan, M. A. (2022). Enhancement of agro-industrial waste composting process via the microbial inoculation: a brief review. Agronomy., 12(1); 198.
Zhang, W.-M., Wang, X.-J., Yin, S.-Q., Chang, X.-Y., & Hai, L. (2021). C/N ratio-induced changes in predominant bacteria affected carbon / nitrogen losses and humus synthesis in composting. Chin. J. Appl. Ecol., 32(11); 4119–4128. 
Zhou, C., Liu, Z., Huang, Z. L., Dong, M., Yu, X. L., & Ning, P. (2015). A new strategy for co-composting dairy manure with rice straw: Addition of different inocula at three stages of composting. Waste Manag., 40; 38–43. 
Zhou, X., Yang, J., Xu, S., Wang, J., Zhou, Q., Li, Y., and  Xinyi. (2020). Rapid in-situ composting of household food waste. Process Saf. Environ. Prot., 141, 259–266.