The Diversity and Resistance of Microbial Community under Mercury Contamination in Paddy Soils

Document Type : Original Research Paper

Authors

1 Research Center for Environment and Clean Technology, National Research and Innovation Agency (BRIN), 15314 South Tangerang, Indonesia

2 Research Center for Applied Microbiology, BRIN, 16911 Bogor, Indonesia

10.22059/poll.2024.376772.2379

Abstract

Traditional gold mining may cause mercury pollution in rice fields, resulting in a significant decrease in rice grain yields, as well as socio-economic and health issues. Bioremediation using indigenous microbes is a promising method to alleviate mercury contamination. Thus, it is necessary to explore the diversity and ability of microbes to remediate the contamination. This study investigated the indigenous microbes in mercury-contaminated soils collected from paddy fields around a gold mining area in Sukabumi Regency, Indonesia. Six soil samples were collected from three locations at the dry season; two paddy fields and a tailing pond located next to gold amalgamation machinery. Physicochemical analysis and total mercury concentration measurement of the soil samples were performed immediately after sampling. Bacteria in soil samples were cultured on Nutrient Agar and its colonies were counted after 24 hours of cultivation. Morphological characterization of the colonies was observed under a light microscope. Bacterial community composition was investigated using 16S rRNA amplicon sequencing. The resistance of bacteria to the mercury was tested by inoculating the mixed cultures in Mueller-Hinton agar supplemented with HgCl2 in concentrations of 10, 30, and 50 ppm. Bacterial colonies appeared higher in the soil sample with the lowest total mercury concentration. However, microbial community compositions were more diverse in the soil with medium mercury contamination. Furthermore, the microbial community cultured from tailing soil, despite lower bacterial diversity, performed mercury resistance up to 50 ppm. Upcoming studies should be conducted to investigate further potential indigenous microbial communities for reducing mercury contamination in soils.

Keywords

Main Subjects


Anne, C. (1984). Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics 11, 265–270.
Asaf, S., Numan, M., Khan, A.L., & Al-Harrasi, A. (2020). Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 40, 138–152. 
Astuti, R.D.P., Mallongi, A., & Rauf, A.U. (2021). Risk identification of Hg and Pb in soil: a case study from Pangkep Regency, Indonesia. Soil Science Annual 72. 
Barkay, T., Miller, S.M., & Summers, A.O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27, 355–384. 
Caporas, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., & et al (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336. 
Cappucino, J.G., & Sherman, N. (2014). Microbiology: A Laboratory Manual. (London: Pearson).
Caracciolo, A.B., Bustamante, M.A., Nogues, I., Di Lenola, M., Luprano, M.L., & Grenni, P. (2015). Changes in microbial community structure and functioning of a semiarid soil due to the use of anaerobic digestate derived composts and rosemary plants. Geoderma 245–246, 89–97. 
Dasgupta, A., Saikia, R., & Handique, P.J. (2018). Mapping the Bacterial Community in Digboi Oil Refinery, India by High-Throughput Sequencing Approach. Curr Microbiol 75, 1441–1446. 
Dash, H.R., & Das, S. (2014). Bioremediation potential of mercury by Bacillus species isolated from marine environment and wastes of steel industry. Bioremediat J 18, 204–212. 
Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797. 
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200. 
Fatimawali, Kepel, B.J., Gani, M.A., & Tallei, T.E. (2020). Comparison of Bacterial Community Structure and Diversity in Traditional Gold Mining Waste Disposal Site and Rice Field by Using a Metabarcoding Approach. Int J Microbiol 2020. 
Gworek, B., Dmuchowski, W., & Baczewska-DÄ…browska, A.H. (2020). Mercury in the terrestrial environment: a review. Environ Sci Eur 32. 
Hemmat-Jou, M.H., Safari-Sinegani, A.A., Mirzaie-Asl, A., & Tahmourespour, A. (2018). Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology 27, 1281–1291. 
Hindersah, R., Risamasu, R., Kalay, A.M., Dewi, T., & Makatita, I. (2018). Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku. Journal of Degraded and Mining Lands Management 5, 1027–1034. 
Hiraishi, A. (2003). Biodiversity of Dioxin-Degrading Microorganisms and Potential Utilization in Bioremediation. Microbes Environ 18, 105–125. 
Igiri, B.E., Okoduwa, S.I.R., Idoko, G.O., Akabuogu, E.P., Adeyi, A.O., & Ejiogu, I.K. (2018). Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J Toxicol 2018. 
Ji, H., Zhang, Y., Bararunyeretse, P., & Li, H. (2018). Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain. Ecotoxicol Environ Saf 165, 182–193. 
Jyothi, N.R., & Farook, N.A.M. Eds. (2020). Mercury Toxicity in Public Health. In Heavy Metal Toxicity. (In J.K. Nduka & M.N. Rashed (Eds.), Public Health (pp. 1-12). London: IntechOpen)
Khomarbaghi, Z., Shavandi, M., Amoozegar, M.A., & Dastgheib, S.M.M. (2019). Bacterial community dynamics during bioremediation of alkane- and PAHs-contaminated soil of Siri island, Persian Gulf: a microcosm study. International Journal of Environmental Science and Technology 16, 7849–7860. 
Kotwal, D.R., Shewale, N.B., Tambat, U.S., Thakare, M.J., & Bholay, A.D. (2018). Bioremediation of Mercury Using Mercury Resistant Bacteria. Research Journal of Life Sciences, Bioinformatics, Pharmaceautical and Chemical Sciences 4, 145–156. 
Krisnawati, D., & Bowo, C. (2019). Agricultural Lime Application to Increase Rice Production in Aluvial Agricultural Soil. Berkala Ilmiah Pertanian 2(1), 13-18.
Labbé, D., Margesin, R., Schinner, F., Whyte, L.G., & Greer, C.W. (2007). Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol Ecol 59, 466–475. 
Liddicoat, C., Bi, P., Waycott, M., Glover, J., Breed, M., & Weinstein, P. (2018). Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia. Science of the Total Environment 626, 117–125. 
Lin, C.C., Yee, N., & Barkay, T. (2011). Microbial Transformations in the Mercury Cycle. In Environmental Chemistry and Toxicology of Mercury, pp. 155–191.
Liu, Q., Wu, Y.H., Cheng, H., Xu, L., Wang, C.S., & Xu, X.W. (2017). Complete genome sequence of bacteriochlorophyll-synthesizing bacterium Porphyrobacter neustonensis DSM 9434. Stand Genomic Sci 12, 1–7. 
Luo, X., Fu, X., Yang, Y., Cai, P., Peng, S., Chen, W., & Huang, Q. (2016). Microbial communities play important roles in modulating paddy soil fertility. Sci Rep 6, 1–12. 
Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., & Wade, W.G. (1998). Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S rRNA. Appl Environ Microbiol 64, 795–799. 
McPherson, M.R., Wang, P., Marsh, E.L., Mitchell, R.B., & Schachtman, D.P. (2018). Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. Journal of Visualized Experiments 2018, 1–11. 
Miao, Y., Heintz, M.B., Bell, C.H., Johnson, N.W., Polasko, A.L.P., Favero, D., & Mahendra, S. (2021). Profiling microbial community structures and functions in bioremediation strategies for treating 1,4-dioxane-contaminated groundwater. J Hazard Mater 408, 124457. 
Mohd-Aizat, A., Mohamad-Roslan, M.K., Wan Nor Azmin, S., & Daljit Singh, K. (2014). The relationship between soil pH and selected soil properties in 48 years  logged-over forest. Int J Environ Sci 4, 1129–1140. 
Nagendra, H. (2002). Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography 22, 175–186. 
Naguib, M.M., El-Gendy, A.O., & Khairalla, A.S. (2018). Microbial Diversity of Mer Operon Genes and Their Potential Rules in Mercury Bioremediation and Resistance. Open Biotechnol J 12, 56–77. 
Nam, N.N., Do, H.D.K., Loan Trinh, K.T., & Lee, N.Y. (2023). Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 12, 1–23. 
Nascimento, A.M.A., & Chartone-Souza, E. (2003). Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genetics and Molecular Research 2, 92–101. 
Naylor, D., McClure, R., & Jansson, J. (2022). Trends in Microbial Community Composition and Function by Soil Depth. Microorganisms 10. 
Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl Environ Soil Sci 2019. 
Novirsa, R., Quang, P., Jeong, H., Fukushima, S., Ishibashi, Y., Wispriyono, B., & Arizono, K. (2019). The evaluation of mercury contamination in upland rice paddy field around artisanal small-scale gold mining area, Lebaksitu, Indonesia. Journal of Environment and Safety 10, 119–125. 
O’Connor, D., Hou, D., Ok, Y.S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F.M.G., & Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int 126, 747–761. 
Olaniran, A.O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14, 10197–10228. 
Oliverio, A.M., Bissett, A., McGuire, K., Saltonstall, K., Turner, B.L., & Fierer, N. (2020). The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities. MBio 11, 1–16. 
Osterwalder, S., Huang, J.H., Shetaya, W.H., Agnan, Y., Frossard, A., Frey, B., Alewell, C., Kretzschmar, R., Biester, H., & Obrist, D. (2019). Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors. Environmental Pollution 250, 944–952. 
Pereira-García, C., del Amo, E.H., Vigués, N., Rey-Velasco, X., Rincón-Tomás, B., Pérez-Cruz, C., Sanz-Sáez, I., Hu, H., Bertilsson, S., Pannier, A., Soltmann, U., Sánchez, P., Acinas, S.G., Bravo, A.G., Alonso-Sáez, L., & Sánchez, O. (2024). Unmasking the physiology of mercury detoxifying bacteria from polluted sediments. Journal of Hazardous Materials 467, 133685.
Pérez-Valdespino, A., Celestino-Mancera, M., Villegas-Rodríguez, V.L., & Curiel-Quesada, E. (2013). Characterization of mercury-resistant clinical Aeromonas species. Brazilian Journal of Microbiology 44, 1279–1283. 
Prescott, L.M. (2002). Microbiology 5th Edition. (New York: The McGraw−Hill Education)
Priyadarshanee, M., Chatterjee, S., Rath, S., Dash, H. R., & Das, S. (2022). Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. Journal of Hazardous Materials, 423, 126985. 
Pushkar, B., Sevak, P., & Singh, A. (2019). Bioremediation treatment process through mercury-resistant bacteria isolated from Mithi river. Appl Water Sci 9, 1–10. 
Rahmeh, R., Akbar, A., Kumar, V., Al-Mansour, H., Kishk, M., Ahmed, N., Al-Shamali, M., Boota, A., Al-Ballam, Z., Shajan, A., et al. (2021). Insights into Bacterial Community Involved in Bioremediation of Aged Oil-Contaminated Soil in Arid Environment. Evolutionary Bioinformatics 17. 
Rath, K.M., Fierer, N., Murphy, D. V., & Rousk, J. (2019). Linking bacterial community composition to soil salinity along environmental gradients. ISME Journal 13, 836–846. 
Safonov, A. V., Babich, T.L., Sokolova, D.S., Grouzdev, D.S., Tourova, T.P., Poltaraus, A.B., Zakharova, E. V., Merkel, A.Y., Novikov, A.P., & Nazina, T.N. (2018). Microbial community and in situ bioremediation of groundwater by nitrate removal in the zone of a radioactive waste surface repository. Front Microbiol 9, 1–17. 
Sangwan, S., & Dukare, A. Eds. (2018). Microbe-Mediated Bioremediation: An Eco-friendly Sustainable Approach for Environmental Clean-Up. (In T.K. Adhya, B. Lal, B. Mohapatra, D. Paul & S. Das (Eds.) Advances in Soil Microbiology: Recent Trends and Future Prospects (pp. 145–163). Singapore: Springer Nature)
Saragih, G.S., Tapriziah, E.R., Syofyan, Y., Masitoh, S., Pandiangan, Y.S.H., & Andriantoro (2021). Mercury Contamination in Selected Edible Plants and Soil from Artisanal and Small-scale Gold Mining in Sukabumi Regency, Indonesia. Makara J Sci 25, 222–228. 
Saranya, K., Sundaramanickam, A., Shekhar, S., Swaminathan, S., & Balasubramanian, T. (2017). Bioremediation of Mercury by Vibrio fluvialis Screened from Industrial Effluents. Biomed Res Int 2017. 
Suhadi, S., Sueb, S., Muliya, B.K., & Meilia Ashoffi, A. (2021). Pollution of mercury and cyanide soils and plants in surrounding in the Artisanal and Small-Scale Gold Mining (ASGM) at Sekotong District, West Lombok, West Nusa Tenggara. Biological Environment and Pollution 1, 30–37. 
Sulaeman, Suparto, and Eviati (2005). Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. (Bogor: Balai Penelitian Tanah)
Syafei, A., Hardianti, A., Abidin, F., Azmi, M.U., Hendrawan, B., & Ariyastuti (2020). Teknologi Pengolahan Emas Pada Pertambangan Emas Skala Kecil di Indonesia. (Jakarta: GOLD-ISMIA)
Tarfeen, N., Nisa, K.U., Hamid, B., Bashir, Z., Yatoo, A.M., Dar, M.A., Mohiddin, F.A., Amin, Z., Ahmad, R.A., & Sayyed, R.Z. (2022). Microbial Remediation: A Promising Tool for Reclamation of Contaminated Sites with Special Emphasis on Heavy Metal and Pesticide Pollution: A Review. Processes 10.
USEPA (2021). Mercury Emissions: The Global Context. (Washington DC: USEPA)
Videira, S.S., De Araujo, J.L.S., Da Silva Rodrigues, L., Baldani, V.L.D., & Baldani, J.I. (2009). Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293, 11–19. 
Vitorino, L.C., & Bessa, L.A. (2018). Microbial diversity: The gap between the estimated and the known. Diversity (Basel) 10. 
Wang, S., Sun, L., Ling, N., Zhu, C., Chi, F., Li, W., Hao, X., Zhang, W., Bian, J., Chen, L., et al. (2020). Exploring Soil Factors Determining Composition and Structure of the Bacterial Communities in Saline-Alkali Soils of Songnen Plain. Front Microbiol 10. 
WHO (2020). 10 Chemicals of Public Health Concern. Retrieved 10 August 2021 from https://www.who.int/.
Yan, X., Luo, X., & Zhao, M. (2016). Metagenomic analysis of microbial community in uranium-contaminated soil. Appl Microbiol Biotechnol 100, 299–310. 
Zhang, K., Shi, Y., Cui, X., Yue, P., Li, K., Liu, X., Tripathi, B.M., & Chu, H. (2019). Salinity Is a Key Determinant for Soil Microbial Communities in a Desert Ecosystem. MSystems 4, 1–11. 
Zhao, X., Huang, J., Lu, J., & Sun, Y. (2019). Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol Environ Saf 170, 218–226. 
Zheng, X., Cao, H., Liu, B., Zhang, M., Zhang, C., Chen, P., & Yang, B. (2022). Effects of Mercury Contamination on Microbial Diversity of Different Kinds of Soil. Microorganisms 10.