Elements Migration from the Flotation Tailings of Copper Smelter Slags after Leaching to the Soil and Plant

Document Type : Original Research Paper

Authors

A. N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of Russian Academy of Sciences, 620110, 15 Akad. Vonsovsky street, Yekaterinburg, Russia

10.22059/poll.2024.377322.2400

Abstract

A field experiment was conducted to study migration of the toxic elements from the flotation tailings of copper smelter slags after sulphuric acid leaching into high-moor peat and lawn grasses. Leaching wastes were studied by X-ray fluorescence, spectral analysis, X-ray powder diffraction and scanning electron microscopy. It has been established that they contain diopside, gypsum, spinel group minerals, jarosite, barite, sphalerite and amorphous silica. 5% of wastes was introduced into lime-neutralized peat. A mixture of lawn grasses was grown on artificial soils in test plots (1 m2). Average samples of soils, shoots and roots were analyzed by inductively coupled plasma mass spectrometry. It was found that, the concentration of most elements is higher in the soil with leaching wastes than in the soil with the flotation tailings, the exceptions are Mn, Co, Ni, Cu, Zn, Cd. The greatest differences in concentration coefficients were noted for Sn (38 times) and S (5.1 times). V, Cr, Co, Ni, Se, Mn, Cu accumulated more strongly in roots on soil with leaching waste compared to both peat and soil with tailings. However, S, Mo, Cd, Sn, Sb, Ba, and Pb accumulate significantly less. The shoots grown on peat with leaching wastes have lower accumulation coefficients for most of the elements compared to both the peat and soil with flotation tailings. The research contributes to the study of the impact of copper smelter slag processing wastes on the environment and is of interest for the development of environmentally friendly and effective methods for their disposal.

Keywords

Main Subjects


Avessalomova, I. A. (1987). Geochemical features in studies of landscapes. Moskow: Izd-vo MGU; 108 p.
Basayigit, L., Dedeoglu, M., & Demir, S. (2017). Digital mapping of Histosols using LANDSAT 7 ETM+ in Isparta, Turkey. In: Arrouays, D., Savin, I., Leenaars, J., McBratney, A.B. (ed) GlobalSoilMap, CRC Press, London; pp. 113-119.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5(1); 180214. doi: 10.1038/sdata.2018.214
CCME. Canadian Council for Ministers for the Environment. Canadian Environmental Quality Guidelines. Retrieved July 29, 2024, from http://stts.ccme.ca/en/index.html.
Dzinomwa, G., Mapani, B., Nghipulile, T., Maweja, K., Kurasha, J. T., Amwaama, M., & Chigayo, K. (2023). Mineralogical Characterization of Historic Copper Slag to Guide the Recovery of Valuable Metals: A Namibian Case Study. Materials, 16(18); 6126. doi: 10.3390/ma16186126
Fomchenko, N. V., Muravyov, & M. I., Kondrat’eva, T. F. (2014). Bioregeneration of the pregnant leach solutions obtained during the leaching of nonferrous metals from slag waste by acidophilic microorganisms. Appl. Biochem. Microbiol., 50(2); 169-172. doi: 10.1134/S0003683814010025
Gondal, A. H., Hussain, I., Ijaz, A. B., … & Usama, M. (2021). Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. International Journal of Agriculture and Biological Sciences, 5(1); 71-81.
GOST 17.4.4.02-84 (1985) Nature Protection (SSOP). Soils. Methods of sampling and sample preparation for chemical, bacteriological, helminthological analysis. Publishing house of standards, Moscow.
Gümüşsoy, A., Başyi̇ği̇t, M., & Kart, E. U. (2023). Economic potential and environmental impact of metal recovery from copper slag flotation tailings. Resources Policy, 80; 103232.  doi: 10.1016/j.resourpol.2022.103232
Jalali, M., Imanifard, A., & Jalali, M. (2023). Heavy metals accumulation in wheat (Triticum aestivum L.) roots and shoots grown in calcareous soils treated with non-spiked and spiked sewage sludge. Environ. Sci. Pollut. Res., 30(8); 20862-20873.  doi: 10.1007/s11356-022-23604-6
Kaksonen, A. H., Särkijärvi, S., Peuraniemi, E., Junnikkala, S., Puhakka, J. A., & Tuovinen, O. H. (2017). Metal biorecovery in acid solutions from a copper smelter slag. Hydrometallurgy, 168; 135-140.  doi: 10.1016/j.hydromet.2016.08.014
Kasikov, A. G., Shchelokova, E. A., Timoshchik, O. A., Semushin, V. V. (2023). Deep Processing of Dump Slag from the Copper-Nickel Industry. Metals, 13; 1265. doi: 10.3390/met13071265
Khalid, M. K., Hamuyuni, J., Agarwal, V., Pihlasalo, J., Haapalainen, M., & Lundström, M. (2019). Sulfuric acid leaching for capturing value from copper rich converter slag. J. Clean Prod., 215; 1005-1013.  doi: 10.1016/j.jclepro.2019.01.083
Khan, I., Awan, S. A., Rizwan, M., Ali, S., Hassan, M. J., Brestic, M., ... & Huang, L. (2021). Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicology and environmental safety, 222; 112510. doi: 10.1016/j.ecoenv.2021.112510.
Kostina, L. V., Tishchenko, A. V., Kuyukina, M. S., & Ivshina, I. B. (2014). Removal of heavy metals from contaminated soils. Agrarian Bulletin of the Urals, 11(129); 47-53. 
Kotelnikova, A. L., Zolotova, E. S., & Ryabinin, V. F. (2023). Element migration from the copper smelting slag recycling waste to the soil–plant system (Middle Urals, Russia). Arab. J. Geosci., 16; 222.  doi: 10.1007/s12517-023-11310-7
Kotelnikova, A. L., & Ryabinin, V. F. (2018). The composition features and perspective of use for the copper slag recycling waste. Litosfera, 18(1); 133-139. doi: 10.24930/1681-9004-2018-18-1-133-139 
Kuznetsova, N. S. (2021). Synthesis, investigation of the structure and properties of complex compounds of hydroxyl amino acids with copper ions. International Scientific Research Journal, 12(114); 180-183.  doi: 10.23670/IRJ.2021.114.12.030
Li, M. S., Luo, Y. P., & Su, Z. Y. (2007). Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental pollution, 147(1); 168-175. doi: 10.1016/j.envpol.2006.08.006
Li, X., Ma, B., Wang, C., & Chen, Y. (2024). Sustainable recovery and recycling of scrap copper and alloy resources: A review. Sustainable Materials and Technologies, 41; e01026. doi: 10.1016/j.susmat.2024.e01026
Lim, B., Aylmore, M., & Alorro, R. D. (2024). Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags. Metals, 14(7); 804. doi: 10.3390/met14070804
Lovynska, V., Sytnyk, S., Montzka, C., Samarska, A., Heilmeier, H., Belleflamme, A., … & Wiche, O. (2024). Interaction between soil water saturation and toxic element accumulation in woody plants (Freiberg region, Germany). Int. J. Environ., 81(2); 570-586. doi: 10.1080/00207233.2024.2322891
Makhathini, T. P., Bwapwa, J. K., & Mtsweni, S. (2023). Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review. Sustainability, 15(3); 2518.  doi: 10.3390/su15032518
Matveev N. M., Pavlovsky V. A., & Prokhorova N. V. Ecological bases of accumulation of heavy metals by agricultural plants in forest-steppe and steppe Volga region. Samara: Publishing house “Samara University”. 215 p.
Men, D., Yao, J., Li, H., … & Ban, J. (2023). The potential environmental risk implications of two typical non-ferrous metal smelting slags: contrasting toxic metal (loid) s leaching behavior and geochemical characteristics. J. Soils Sediments, 23; 1944-1959.  doi: 10.1007/s11368-023-03468-0
Meng, C., Tian, D., Zeng, H., … & Niu, S. (2019). Global soil acidification impacts on belowground processes. Environ. Res. Lett., 14(7); 074003.  doi: 10.1088/1748-9326/ab239c
Muravyov, M. I., Fomchenko, N. V., Usoltsev, A. V., Vasilyev, E. A., & Kondrat’eva, T. F. (2012). Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy, 119; 40-46.  doi: 10.1016/j.hydromet.2012.03.001
Mussapyrova, L., Nadirov, R., Baláž, P., Rajňák, M., Bureš, R., & Baláž, M. (2021). Selective room-temperature leaching of copper from mechanically activated copper smelter slag.     J. Mater Res. Technol., 12; 2011-2025.  doi: 10.1016/j.jmrt.2021.03.090
Nadłonek, W., Cabała, J., & Szopa, K. (2024). Potentially Harmful Elements (As, Sb, Cd, Pb) in Soil Polluted by Historical Smelting Operation in the Upper Silesian Area (Southern Poland). Minerals, 14(5); 475. doi: 10.3390/min14050475
Phiri, T. C., Singh, P., & Nikoloski, A. N. (2022). The potential for copper slag waste as a resource for a circular economy: A review–Part I. Minerals Engineering, 180; 107474.  doi: 10.1016/j.mineng.2022.107474
Plekhanova, I. O., Zolotareva, O. A., Tarasenko, I. D., & Yakovlev, A. S. (2019). Assessment of Ecotoxicity of Soils Contaminated by Heavy Metals. Eurasian Soil Sci., 52(10); 1274-1288.  doi: 10.1134/S1064229319100089
Reutov, D. S., & Khalezov, B. D. (2015). The search for optimal conditions for sulfuric acid leaching to recover copper and zinc from flotation tailings copper slag. Butlerov Communications, 44(2); 199-203. 
SanPiN 1.2.3685-21. (2021). Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. Retrieved July 29, 2024, from https://docs.cntd.ru/document/573500115#6560IO
Sarapulova, G. I. (2018). Environmental geochemical assessment of technogenic soils. Journal of Mining Institute, 234; 658-662.  doi: 10.31897/PMI.2018.6.658
Seyrankaya, A. (2022). Pressure leaching of copper slag flotation tailings in oxygenated sulfuric acid media. ACS omega, 7(40); 35562-35574.  doi: 10.1021/acsomega.2c02903
Shi, G., Liao, Y., Su, B., Zhang, Y., Wang, W., & Xi, J. (2020). Kinetics of copper extraction from copper smelting slag by pressure oxidative leaching with sulfuric acid. Separation and Purification Technology, 241; 116699.  doi: 10.1016/j.seppur.2020.116699
Sibanda, V., Sipunga, E., Danha, G., & Mamvura, T. A. (2020). Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal. Heliyon, 6(1); e03135. doi: 10.1016/j.heliyon.2019.e03135
Sokolova, T. A., Tolpeshta, I. I., & Trofimov, S. Ya. Soil acidity. (2012). Acid-base buffering capacity of soils. Aluminum compounds in the solid phase of the soil and in the soil solution. Tula: Grif and K, 124 p. 
Štirbanović, Z., Urošević, D., Đorđević, M., Sokolović, J., Aksić, N., Živadinović, N., & Milutinović, S. (2022). Application of Thionocarbamates in Copper Slag Flotation. Metals, 12(5); 832.  doi: 10.3390/met12050832
Terekhova, V. A., Prudnikova, E. V., Kiryushina, A. P., Karpukhin, M. M., Plekhanova, I. O., & Yakimenko, O. S. (2021). Phytotoxicity of heavy metals in contaminated podzolic soils of different fertility levels. Eurasian Soil Science, 54(6), 964-974. doi: 10.1134/S1064229321060132.
Tian, H., Guo, Z., Pan, J., Zhu, D., Yang, C., Xue, Y., Li, S., & Wang, D. (2021). Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour. Conserv. Recycl., 168; 105366.  doi: 10.1016/j.resconrec.2020.105366
Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M. B., Williams, M. A., & Yoshihara, T. (2020). Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. Journal of Agricultural and Food Chemistry, 68(46); 12856-12869. doi: 10.1021/acs.jafc.0c00183.
Urosevic, D. M., Dimitrijevic, M. D., Jankovic, Z. D., & Antic, D. V. (2015). Recovery of copper from copper slag and copper slag flotation tailings by oxidative leaching. Physicochem. Probl. Miner. Process, 51.  doi: 10.5277/ppmp150107
VetPin 13.7.1-00. (2001). Veterinary rules and regulations. (Moskow).
Xu, D., Shen, Z., Dou, C., Dou, Z., Li, Y., Gao, Y., & Sun, Q. (2022). Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns. Sci Rep., 12; 9211. doi: 10.1038/s41598-022-13140-1.
Yaashikaa, P. R., Kumar, P. S., Jeevanantham, S., & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut., 301; 119035.  doi: 10.1016/j.envpol.2022.119035
Zhai, Q., Liu, R., Wang, C., Sun, W., Tang, C., & Min, X. (2023). Simultaneous recovery of arsenic and copper from copper smelting slag by flotation: Redistribution behavior and toxicity investigation. J. Clean Prod., 425; 138811. doi: doi.org/10.1016/j.jclepro.2023.138811
Zhou, W., Liu, X., Lyu, X., Gao, W., Su, H., & Li, C. (2022). Extraction and separation of copper and iron from copper smelting slag: A review. J. Clean Prod., 368; 133095. doi: 10.1016/j.jclepro.2022.133095
Zolotova, E. (2021). Studies of soils and vegetation on non-ferrous metallurgy slag dumps. International Journal of Bio-resource and Stress Management, 12(1); 040-046. doi: 10.23910/1.2021.2178a
Zolotova, E., Kotelnikova, A., & Ryabinin, V. (2023). The content of toxic elements in soil-plant system based on ombrotrophic peat with the copper smelting slag recycling waste. Pollution 9(1); 286-298. doi: 10.22059/poll.2022.346474.1551