Avessalomova, I. A. (1987). Geochemical features in studies of landscapes. Moskow: Izd-vo MGU; 108 p.
Basayigit, L., Dedeoglu, M., & Demir, S. (2017). Digital mapping of Histosols using LANDSAT 7 ETM+ in Isparta, Turkey. In: Arrouays, D., Savin, I., Leenaars, J., McBratney, A.B. (ed) GlobalSoilMap, CRC Press, London; pp. 113-119.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5(1); 180214. doi: 10.1038/sdata.2018.214
CCME. Canadian Council for Ministers for the Environment. Canadian Environmental Quality Guidelines. Retrieved July 29, 2024, from http://stts.ccme.ca/en/index.html.
Dzinomwa, G., Mapani, B., Nghipulile, T., Maweja, K., Kurasha, J. T., Amwaama, M., & Chigayo, K. (2023). Mineralogical Characterization of Historic Copper Slag to Guide the Recovery of Valuable Metals: A Namibian Case Study. Materials, 16(18); 6126. doi: 10.3390/ma16186126
Fomchenko, N. V., Muravyov, & M. I., Kondrat’eva, T. F. (2014). Bioregeneration of the pregnant leach solutions obtained during the leaching of nonferrous metals from slag waste by acidophilic microorganisms. Appl. Biochem. Microbiol., 50(2); 169-172. doi: 10.1134/S0003683814010025
Gondal, A. H., Hussain, I., Ijaz, A. B., … & Usama, M. (2021). Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. International Journal of Agriculture and Biological Sciences, 5(1); 71-81.
GOST 17.4.4.02-84 (1985) Nature Protection (SSOP). Soils. Methods of sampling and sample preparation for chemical, bacteriological, helminthological analysis. Publishing house of standards, Moscow.
Gümüşsoy, A., Başyi̇ği̇t, M., & Kart, E. U. (2023). Economic potential and environmental impact of metal recovery from copper slag flotation tailings. Resources Policy, 80; 103232. doi: 10.1016/j.resourpol.2022.103232
Jalali, M., Imanifard, A., & Jalali, M. (2023). Heavy metals accumulation in wheat (Triticum aestivum L.) roots and shoots grown in calcareous soils treated with non-spiked and spiked sewage sludge. Environ. Sci. Pollut. Res., 30(8); 20862-20873. doi: 10.1007/s11356-022-23604-6
Kaksonen, A. H., Särkijärvi, S., Peuraniemi, E., Junnikkala, S., Puhakka, J. A., & Tuovinen, O. H. (2017). Metal biorecovery in acid solutions from a copper smelter slag. Hydrometallurgy, 168; 135-140. doi: 10.1016/j.hydromet.2016.08.014
Kasikov, A. G., Shchelokova, E. A., Timoshchik, O. A., Semushin, V. V. (2023). Deep Processing of Dump Slag from the Copper-Nickel Industry. Metals, 13; 1265. doi: 10.3390/met13071265
Khalid, M. K., Hamuyuni, J., Agarwal, V., Pihlasalo, J., Haapalainen, M., & Lundström, M. (2019). Sulfuric acid leaching for capturing value from copper rich converter slag. J. Clean Prod., 215; 1005-1013. doi: 10.1016/j.jclepro.2019.01.083
Khan, I., Awan, S. A., Rizwan, M., Ali, S., Hassan, M. J., Brestic, M., ... & Huang, L. (2021). Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicology and environmental safety, 222; 112510. doi: 10.1016/j.ecoenv.2021.112510.
Kostina, L. V., Tishchenko, A. V., Kuyukina, M. S., & Ivshina, I. B. (2014). Removal of heavy metals from contaminated soils. Agrarian Bulletin of the Urals, 11(129); 47-53.
Kotelnikova, A. L., Zolotova, E. S., & Ryabinin, V. F. (2023). Element migration from the copper smelting slag recycling waste to the soil–plant system (Middle Urals, Russia). Arab. J. Geosci., 16; 222. doi: 10.1007/s12517-023-11310-7
Kotelnikova, A. L., & Ryabinin, V. F. (2018). The composition features and perspective of use for the copper slag recycling waste. Litosfera, 18(1); 133-139. doi: 10.24930/1681-9004-2018-18-1-133-139
Kuznetsova, N. S. (2021). Synthesis, investigation of the structure and properties of complex compounds of hydroxyl amino acids with copper ions. International Scientific Research Journal, 12(114); 180-183. doi: 10.23670/IRJ.2021.114.12.030
Li, M. S., Luo, Y. P., & Su, Z. Y. (2007). Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental pollution, 147(1); 168-175. doi: 10.1016/j.envpol.2006.08.006
Li, X., Ma, B., Wang, C., & Chen, Y. (2024). Sustainable recovery and recycling of scrap copper and alloy resources: A review. Sustainable Materials and Technologies, 41; e01026. doi: 10.1016/j.susmat.2024.e01026
Lim, B., Aylmore, M., & Alorro, R. D. (2024). Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags. Metals, 14(7); 804. doi: 10.3390/met14070804
Lovynska, V., Sytnyk, S., Montzka, C., Samarska, A., Heilmeier, H., Belleflamme, A., … & Wiche, O. (2024). Interaction between soil water saturation and toxic element accumulation in woody plants (Freiberg region, Germany). Int. J. Environ., 81(2); 570-586. doi: 10.1080/00207233.2024.2322891
Makhathini, T. P., Bwapwa, J. K., & Mtsweni, S. (2023). Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review. Sustainability, 15(3); 2518. doi: 10.3390/su15032518
Matveev N. M., Pavlovsky V. A., & Prokhorova N. V. Ecological bases of accumulation of heavy metals by agricultural plants in forest-steppe and steppe Volga region. Samara: Publishing house “Samara University”. 215 p.
Men, D., Yao, J., Li, H., … & Ban, J. (2023). The potential environmental risk implications of two typical non-ferrous metal smelting slags: contrasting toxic metal (loid) s leaching behavior and geochemical characteristics. J. Soils Sediments, 23; 1944-1959. doi: 10.1007/s11368-023-03468-0
Meng, C., Tian, D., Zeng, H., … & Niu, S. (2019). Global soil acidification impacts on belowground processes. Environ. Res. Lett., 14(7); 074003. doi: 10.1088/1748-9326/ab239c
Muravyov, M. I., Fomchenko, N. V., Usoltsev, A. V., Vasilyev, E. A., & Kondrat’eva, T. F. (2012). Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy, 119; 40-46. doi: 10.1016/j.hydromet.2012.03.001
Mussapyrova, L., Nadirov, R., Baláž, P., Rajňák, M., Bureš, R., & Baláž, M. (2021). Selective room-temperature leaching of copper from mechanically activated copper smelter slag. J. Mater Res. Technol., 12; 2011-2025. doi: 10.1016/j.jmrt.2021.03.090
Nadłonek, W., Cabała, J., & Szopa, K. (2024). Potentially Harmful Elements (As, Sb, Cd, Pb) in Soil Polluted by Historical Smelting Operation in the Upper Silesian Area (Southern Poland). Minerals, 14(5); 475. doi: 10.3390/min14050475
Phiri, T. C., Singh, P., & Nikoloski, A. N. (2022). The potential for copper slag waste as a resource for a circular economy: A review–Part I. Minerals Engineering, 180; 107474. doi: 10.1016/j.mineng.2022.107474
Plekhanova, I. O., Zolotareva, O. A., Tarasenko, I. D., & Yakovlev, A. S. (2019). Assessment of Ecotoxicity of Soils Contaminated by Heavy Metals. Eurasian Soil Sci., 52(10); 1274-1288. doi: 10.1134/S1064229319100089
Reutov, D. S., & Khalezov, B. D. (2015). The search for optimal conditions for sulfuric acid leaching to recover copper and zinc from flotation tailings copper slag. Butlerov Communications, 44(2); 199-203.
SanPiN 1.2.3685-21. (2021). Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. Retrieved July 29, 2024, from https://docs.cntd.ru/document/573500115#6560IO
Sarapulova, G. I. (2018). Environmental geochemical assessment of technogenic soils. Journal of Mining Institute, 234; 658-662. doi: 10.31897/PMI.2018.6.658
Seyrankaya, A. (2022). Pressure leaching of copper slag flotation tailings in oxygenated sulfuric acid media. ACS omega, 7(40); 35562-35574. doi: 10.1021/acsomega.2c02903
Shi, G., Liao, Y., Su, B., Zhang, Y., Wang, W., & Xi, J. (2020). Kinetics of copper extraction from copper smelting slag by pressure oxidative leaching with sulfuric acid. Separation and Purification Technology, 241; 116699. doi: 10.1016/j.seppur.2020.116699
Sibanda, V., Sipunga, E., Danha, G., & Mamvura, T. A. (2020). Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal. Heliyon, 6(1); e03135. doi: 10.1016/j.heliyon.2019.e03135
Sokolova, T. A., Tolpeshta, I. I., & Trofimov, S. Ya. Soil acidity. (2012). Acid-base buffering capacity of soils. Aluminum compounds in the solid phase of the soil and in the soil solution. Tula: Grif and K, 124 p.
Štirbanović, Z., Urošević, D., Đorđević, M., Sokolović, J., Aksić, N., Živadinović, N., & Milutinović, S. (2022). Application of Thionocarbamates in Copper Slag Flotation. Metals, 12(5); 832. doi: 10.3390/met12050832
Terekhova, V. A., Prudnikova, E. V., Kiryushina, A. P., Karpukhin, M. M., Plekhanova, I. O., & Yakimenko, O. S. (2021). Phytotoxicity of heavy metals in contaminated podzolic soils of different fertility levels. Eurasian Soil Science, 54(6), 964-974. doi: 10.1134/S1064229321060132.
Tian, H., Guo, Z., Pan, J., Zhu, D., Yang, C., Xue, Y., Li, S., & Wang, D. (2021). Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour. Conserv. Recycl., 168; 105366. doi: 10.1016/j.resconrec.2020.105366
Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M. B., Williams, M. A., & Yoshihara, T. (2020). Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. Journal of Agricultural and Food Chemistry, 68(46); 12856-12869. doi: 10.1021/acs.jafc.0c00183.
Urosevic, D. M., Dimitrijevic, M. D., Jankovic, Z. D., & Antic, D. V. (2015). Recovery of copper from copper slag and copper slag flotation tailings by oxidative leaching. Physicochem. Probl. Miner. Process, 51. doi: 10.5277/ppmp150107
VetPin 13.7.1-00. (2001). Veterinary rules and regulations. (Moskow).
Xu, D., Shen, Z., Dou, C., Dou, Z., Li, Y., Gao, Y., & Sun, Q. (2022). Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns. Sci Rep., 12; 9211. doi: 10.1038/s41598-022-13140-1.
Yaashikaa, P. R., Kumar, P. S., Jeevanantham, S., & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut., 301; 119035. doi: 10.1016/j.envpol.2022.119035
Zhai, Q., Liu, R., Wang, C., Sun, W., Tang, C., & Min, X. (2023). Simultaneous recovery of arsenic and copper from copper smelting slag by flotation: Redistribution behavior and toxicity investigation. J. Clean Prod., 425; 138811. doi: doi.org/10.1016/j.jclepro.2023.138811
Zhou, W., Liu, X., Lyu, X., Gao, W., Su, H., & Li, C. (2022). Extraction and separation of copper and iron from copper smelting slag: A review. J. Clean Prod., 368; 133095. doi: 10.1016/j.jclepro.2022.133095
Zolotova, E. (2021). Studies of soils and vegetation on non-ferrous metallurgy slag dumps. International Journal of Bio-resource and Stress Management, 12(1); 040-046. doi: 10.23910/1.2021.2178a
Zolotova, E., Kotelnikova, A., & Ryabinin, V. (2023). The content of toxic elements in soil-plant system based on ombrotrophic peat with the copper smelting slag recycling waste. Pollution 9(1); 286-298. doi: 10.22059/poll.2022.346474.1551