Abdul-Wahab, S., Elkamel, A., Madhuranthakam, C., & Al-Otaibi, M. (2006). Building inferential estimators for modeling product quality in a crude oil desalting and dehydration process. Chem. Eng. Process. Process Intensif., 45(7), 568-577.
AbdulJalee, E., & Aparna, K. (2016). Neuro-fuzzy Soft Sensor Estimator for Benzene Toluene Distillation Column. Procedia Technol., 25, 92-99.
Al-Otaibi, M. (1999). Experimental investigation of Kuwaiti crude oil desalting/dehydration process. (M.S. Thesis), Kuwait University.
Al-Otaibi, M. B. (2004). Modelling and optimising of crude oil desalting process. (Ph.D. Thesis), Loughborough University
Al-Otaibi, M. B., Elkamel, A., Al-Sahhaf, T., & Ahmed, A. S. (2003). Experimental investigation of crude oil desalting and dehydration. Chem. Eng. Commun., 190(1), 65-82.
Al-Otaibi, M. B., Elkamel, A., Nassehi, V., & Abdul-Wahab, S. A. (2005). A computational intelligence based approach for the analysis and optimization of a crude oil desalting and dehydration process. Energy fuels, 19(6), 2526-2534.
Bidar, B., Khalilipour, M. M., Shahraki, F., & Sadeghi, J. (2018). A data-driven soft-sensor for monitoring ASTM-D86 of CDU side products using local instrumental variable (LIV) technique. J. Taiwan Inst. Chem. Eng., 84, 49-59.
Bidar, B., Sadeghi, J., Shahraki, F., & Khalilipour, M. M. (2017). Data-driven soft sensor approach for online quality prediction using state dependent parameter models. Chemom. Intell. Lab. Syst., 162, 130-141.
Bidar, B., Shahraki, F., Sadeghi, J., & Khalilipour, M. M. (2018). Soft sensor modeling based on multi-state-dependent parameter models and application for quality monitoring in industrial sulfur recovery process. IEEE Sens. J., 18(11), 4583-4591.
Curreri, F., Fiumara, G., & Xibilia, M. G., (2020). Input Selection Methods for Soft Sensor Design: A Survey. Future Internet, 12(6), 97.
Dadari, S., Rahimi, M., & Zinadini, S. (2016). Crude oil desalter effluent treatment using high flux synthetic nanocomposite NF membrane-optimization by response surface methodology. Desalination, 377, 34-46.
Fan, J. (2018). Local polynomial modelling and its applications: monographs on statistics and applied probability, CRC Press, Routledge.
Fan, J., & Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods Springer-Verlag. New York.
Fortuna, L., Graziani, S., Rizzo, A., & Xibilia, M. G. (2007). Soft sensors for monitoring and control of industrial processes. London: Springer.
Gharehbaghi, H., & Sadeghi, J. (2016). A Novel Approach for Prediction of Industrial Catalyst Deactivation Using Soft Sensor Modeling. Catalysts, 6(7), 93.
Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models, volume 43 of Monographs on Statistics and Applied Probability. In: Chapman & Hall, London.
He, Y.-L., Geng, Z., & Zhu, Q.-X. (2015). Data driven soft sensor development for complex chemical processes using extreme learning machine. Chem. Eng. Res. Des., 102, 1-11.
Herceg, S., Andrijić, Ž. U., & Bolf, N. (2019). Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models. Chem. Eng. Res. Des., 149, 95-103.
Hosseinpour, F., Ghader, S., Rahimpour, M. R., & Bagheri, H. (2019). Modification of an industrial crude oil desalting unit by electric mixing to improve the dehydration efficiency. J. Chem. Technol. Metall., 54(1), 124-134.
Jolliffe, I. T. (2002). Principal component analysis (Second ed. ed.): Springer.
Kadlec, P., Gabrys, B., & Strandt, S. (2009). Data-driven soft sensors in the process industry. Comput. Chem. Eng., 33(4), 795-814.
Kamari, A., Bahadori, A., & Mohammadi, A. H. (2015). On the determination of crude oil salt content: Application of robust modeling approaches. J. Taiwan Inst. Chem. Eng., 55, 27-35.
Kanno, Y., & Kaneko, H. (2020). Ensemble just-in-time model based on Gaussian process dynamical models for nonlinear and dynamic processes. Chemom. Intell. Lab. Syst., 203, 104061.
Li, K., Xu, W., Han, Y., Ge, F., & Wang, Y. a. (2019). Soft sensor for the moisture content of crude oil based on multi-kernel Gaussian process regression optimized by an adaptive variable population fruit fly optimization algorithm. Trans. Inst. Meas. Control, 42(4), 770-785.
Liu, J. (2014). Developing a soft sensor based on sparse partial least squares with variable selection. J. Process Control , 24(7), 1046-1056.
Mahdi, K., Gheshlaghi, R., Zahedi, G., & Lohi, A. (2008). Characterization and modeling of a crude oil desalting plant by a statistically designed approach. J. Petrol. Sci. Eng., 61(2–4), 116-123.
Mahdi, K., Gheshlaghi, R., Zahedi, G., & Lohi, A. (2008). Characterization and modeling of a crude oil desalting plant by a statistically designed approach. J. Petrol. Sci. Eng., 61(2-4), 116-123.
Moghadam, R. P., Sadeghi, J., & Shahraki, F. (2021). Soft sensor model for monitoring and online control based on a dynamic model and local instrumental variable technique. Int. J. Modell. Identif. Control, 39(3), 192-203.
Nasehi, S., Sarraf, M. J., Ilkhani, A., Mohammadmirzaie, M. A., & Fazaelipoor, M. H. (2019). Statistical evaluation and Optimization of Crude Oil Desalting Unit: A Case Study of Bandar Abbas oil Refinery. J. Biochem. Technol., 10(2), 59-68.
Pan, H., Su, T., Huang, X., & Wang, Z. (2021). LSTM-based soft sensor design for oxygen content of flue gas in coal-fired power plant. Trans. Inst. Meas. Control, 43(1), 78-87.
Ranaee, E., Ghorbani, H., Keshavarzian, S., Abarghoei, P. G., Riva, M., Inzoli, F., & Guadagnini, A. (2021). Analysis of the performance of a crude-oil desalting system based on historical data. Fuel, 291, 120046.
Roodbari, N. H., Badiei, A., Soleimani, E., & Khaniani, Y. (2016). Tweens demulsification effects on heavy crude oil/water emulsion. Arabian J. Chem., 9, S806-S811.
Shi, X., & Xiong, W. (2018). LWS based PCA subspace ensemble model for soft sensor development. IFAC-Papers OnLine, 51(18), 649-654.
Sotelo, C., Favela-Contreras, A., Sotelo, D., Beltrán-Carbajal, F., & Cruz, E. (2018). Control Structure Design for Crude Oil Quality Improvement in a Dehydration and Desalting Process. Arabian J. Sci. Eng., 43(11), 6579–6594.
Souza, F. A. A., Araújo, R., Matias, T., & Mendes, J., (2013). A multilayer-perceptron based method for variable selection in soft sensor design. J. Process Control, 23(10), 1371-1378.
Sun, K., Huang, S.-h., Jang, S.-S., & Wong, D. S.-H. (2016). Development of soft sensor with neural network and nonlinear variable selection for crude distillation unit process. Comput. Aided Chem. Eng., 38, 337-342.
Wang, D., Liu, J., & Srinivasan, R. (2010). Data-Driven Soft Sensor Approach for Quality Prediction in a Refining Process. IEEE Trans. Ind. Inf., 6(1), 11 - 17.
Young, P. (1998). Data-based mechanistic modeling of engineering systems. J. Vib. Control, 4(1), 5-28.
Young, P. C. (2011). Recursive estimation and time-series analysis: An introduction for the student and practitioner: Springer Science & Business Media.
Zhao, T., Li, P., & Cao, J. (2019). Soft sensor modeling of chemical process based on self-organizing recurrent interval type-2 fuzzy neural network. ISA Trans., 84, 237-246.
Zheng, K., & Funatsu, K. (2018). Partial constrained least squares (PCLS) and application in soft sensor. Chemom. Intell. Lab. Syst., 177, 64-73.
Zhongda, T., Shujiang, L., Yanhong, W., & Xiangdong, W. (2016). A multi-model fusion soft sensor modelling method and its application in rotary kiln calcination zone temperature prediction. Trans. Inst. Meas. Control, 38(1), 110-124.