Ashok, A., Cusack, M., Saderne, V., Krishnakumar, P. K., Rabaoui, L., Qurban, M. A., Duarte, C. M., & Agustí, S. )2019(. Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. Science of the Total Environment, 669; 205-212.
Chistoserdova, L. & Kalyuzhnaya, M. G. (2018). Current trends in methylotrophy. Trends in Microbiology, 26;703-714.
Collins, W., Orbach, R., Bailey, M., Biraud, S., Coddington, I., DiCarlo, D., Peischl, J., Radhakrishnan, A. & Schimel, D. (2022). Monitoring methane emissions from oil and gas operations. Optics Express., 30(14); 24326-24351.
De Marco, P., Pacheco, C. C., Figueiredo, A. R. & Moradas-Ferreira, P. (2004). Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiology Letters, 234;75-80.
Devatha, C., Vishnu Vishal, A. & Purna Chandra Rao, J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9(89);1-10.
Di Marcantonio, C., Chiavola, A., Noce, A., Straccamore, E., Giannuzzi, A., Jirillo, J., Gallo, F. & Boni, M. R. (2023). A sustainable approach to enhance heavy hydrocarbons removal in landfarming treatment. Biodegradation; 34;417–430.
Dianou, D. & Adachi, K. (1999). Characterization of methanotrophic bacteria isolated from a subtropical paddy field. FEMS microbiology letters, 173(1); 163-173.
Ghashghavi, M., Jetten, M. S. & Lüke, C. (2017). Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. Amb Express, 7(162); 1-11.
Giri, D. D., Singh, S. K., Giri, A., Dwivedi, H. & Kumar, A. (2021). Bioremediation potential of methylotrophic bacteria. Microbe Mediated Remediation of Environmental Contaminants. Elsevier; 199-207.
Grady, E. N., MacDonald, J., Liu, L., Richman, A. & Yuan, Z.-C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial cell factories, 15(203); 1-18.
Graham, D. W., Korich, D. G., LeBlanc, R. P., Sinclair, N. A. & Arnold, R. G. (1992). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Applied and Environmental Microbiology, 58(7);2231-2236.
Guan, Y., Li, Z., Kang, Y.-H. & Lee, M.-K. (2023). Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp. nov. from Korean Soil. Journal of Microbiology and Biotechnology, 33(6);753-759.
Haleyur, N., Shahsavari, E., Jain, S. S., Koshlaf, E., Ravindran, V. B., Morrison, P. D., Osborn, A. M. & Ball, A. S. (2019). Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: response and dynamics of the bacterial community. Journal of environmental management, 238; 49-58.
Hamad, A. A., Moubasher, H. A., Moustafa, Y. M. & Mohamed, N. H. (2021). Petroleum hydrocarbon bioremediation using native fungal isolates and consortia. The Scientific World Journal, 6641533; 13.
Jhala, Y., Vyas, R., Shelat, H., Patel, H. & Patel, K. (2014). Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World Journal of Microbiology and Biotechnology, 30(6); 1845-1860.
Khan, M. A. I., Biswas, B., Smith, E., Naidu, R. & Megharaj, M. (2018). Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil-a review. Chemosphere, 212; 755-767.
Khider, M. L., Brautaset, T. & Irla, M. (2021). Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications. World Journal of Microbiology and Biotechnology, 37(4); 1-11.
Macey, M. C., Pratscher, J., Crombie, A. T. & Murrell, J. C. (2020). Impact of plants on the diversity and activity of methylotrophs in soil. Microbiome, 8; 31.
Maki, A. A., Al-Taee, A. M. & Atwan, Z. W. (2023). Measuring the Degradation of Aromatic Compounds Using Methylorubrum extorquens Isolated from Oil-Contaminated Soils in Southern Iraq. Mesopotamian Journal of Marine Sciences, 38(1); 9-20.
Maki, A. A., Al-Taee, A. M. & Atwan, Z. W. (2024). Molecular Identification of Methylorubrum extorquens using PCR-Amplified MxaF Gene Fragments as A Molecular Marker. Baghdad Science Journal, 21(1); 0019-0019.
Martínez-Cuesta, R., Conlon, R., Wang, M., Blanco-Romero, E., Durán, D., Redondo-Nieto, M., Dowling, D., Garrido-Sanz, D., Martin, M. & Germaine, K. (2023). Field scale biodegradation of total petroleum hydrocarbons and soil restoration by Ecopiles: microbiological analysis of the process. Frontiers in Microbiology, 14; 1158130.
Mauricio-Gutiérrez, A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C., Sánchez-Alonso, M. P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, 46(4); 59-69.
Mosin, O. & Ignatov, I. (2014). Evolution, metabolism and biotechnological usage of methylotrophic microorganisms. Eur J Mol Biotechnol, 5;131-48.
Ossai, I. C., Ahmed, A., Hassan, A. &Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17(1); 100526.
Rani, V., Bhatia, A., Nain, L., Tomar, G. S. &Kaushik, R. (2021). Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World Journal of Microbiology and Biotechnology, 37(4); 1-22.
Samanta, D. & Sani, R. K. (2023). Methane Oxidation via Chemical and Biological Methods: Challenges and Solutions. Methane, 2(3); 279-303.
Semrau, J. D., DiSpirito, A. A., Gu, W. & Yoon, S. (2018). Metals and methanotrophy. Applied and environmental microbiology, 84(6);e02289-17.
Shibulal, B., Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S. & Joshi, S. J. (2017). The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions. PLoS One, 12(2); e0171432.
Su, Q., Yu, J., Fang, K., Dong, P., Li, Z., Zhang, W., Liu, M., Xiang, L. & Cai, J. (2023). Microbial removal of petroleum hydrocarbons from contaminated soil under arsenic stress. Toxics, 11(2); 143.
Trimurtulu, N. (2021). Chapter-2 Perspectve Novel Approach to Enhance Soil Bioremediation by Methanotrophs. Multidisciplinary Research and Development, 31.
Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource technology, 223; 277-286.
Wang, M., Ding, M. & Yuan, Y. (2023). Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering, 10(3); 347.
Whittenbury, R., Philips, K.C., & Wilkinson, J.F. (1970). Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology, 61(2); 205-218.
Wu, H., Xie, L., Wu, Y., Chen, L., Jiang, B., Chen, X. & Wu, Y. (2023). Improving cleaner production of human activities to mitigate total petroleum hydrocarbons accumulation in coastal environment. Marine Pollution Bulletin, 186; 114473.
Žvirgždas, J., Paškevičius, A., Petrovas, S., Galginienė, I. & Iljasevičius, K. (2023). Isolation, selection, and use of oil-degrading microorganisms for biological treatment of contaminated soil. Polish journal of environmental studies, 32(3); 2455-2464.