Spatial Distribution of Natural and Artificial Radionuclides in Urban Soils and Bottom Sediments of Monchegorsk Lakes: Russia

Document Type : Original Research Paper

Authors

Federal State Budgetary Institution of Science, Federal Research Center for Comprehensive Study of the Arctic named after Academician N.P. Laverov, Ural Branch of the Russian Academy of Sciences, 163020, Russia, Arkhangelsk, Nikolsky Avenue, Building 20, Russia

10.22059/poll.2024.377256.2397

Abstract

The article presents the results of a study of soils and bottom sediments of lakes in the area of Monchegorsk city. The purpose of the work is to identify patterns of distribution of natural and man-made radionuclides in urban soils and bottom sediments of lakes in Monchegorsk city. The specific activity values of radionuclides in urban soil samples were as follows: for technogenic 137Cs, up to 31.3 Bq/kg; in soils in the zone of influence of the plant (in subflare areas), up to 63.4 Bq/kg. For natural radionuclides in urban soils, the values were as follows: 226Ra – up to 14.2 Bq/kg; in soils in the zone of influence of the plant (in sub-flare areas) – up to 21.6 Bq/kg; 232Th in urban soils – up to 1. The concentration of 8.3 Bq/kg was observed in soils in the zone of influence of the plant (in sub-flare areas), while the concentration of 17 Bq/kg was observed in soils in the same area. The concentration of 498 Bq/kg was observed in urban soils for 40K, while the concentration of 317 Bq/kg was observed in sub-flare areas. In bottom sediments of lakes, the concentration of technogenic 137Cs was found to be up to 45.8 Bq/kg, while the concentration of natural radionuclides, including 226Ra (up to 62.6 Bq/kg), 232Th (11 Bq/kg), and 40K (268 Bq/kg), was also determined.

Keywords

Main Subjects


Ahmed, M. M., Das, S. K., Haydar, M. A., Bhuiyan, M. M. H., Ali, M. I., & Paul, D. (2014). Study of natural radioactivity and radiological hazard of sand, sediment, and soil samples from Inani Beach, Cox’s Bazar, Bangladesh. Journal of Nuclear and Particle Phys., 4(2), 69-78.
Afifi, A., Clark, V., & May, S. (2004). Computer-Aided Multivariate Analysis. 4th ed. Boca Raton, Fl: Chapman & Hall/CRC.
Akram, M., Qureshi, R. M., Ahmad, N., Solaija, T. J., Mashiatullah, A., Afzal, M., Faruq, M. U. and Zeb, L. (2006). Concentration of natural and artificial radionuclides in bottom sediments of Karachi Harbour/Manora Channel, Pakistan Coast (Arabian Sea). J. of the Chem. Society of Pakist., 28(3), 306-312. 
Al-Trabulsy, H. A., Khater, A .E. M., & Habbani, F. I. (2011). Radioactivity Levels and Radiological Hazard Indices at the Saudi Coastline of the Gulf of Aqaba. Radiation Physics and Chemist., 80, 343-348.
Antony, M. R., Eappen, J. K. P., & Visnuprasad, A. K. (2019). Activity concentrations of radionuclides in soil samples along the coastal areas of Kerala, India and the assessment of radiation hazard indices. Journal of Radioanalytical and Nuclear Chemist., 320(2), 291–298.
Antrop, M. (2004). Landscape Change and the Urbanization Process in Europe. Landscape and Urban Plann., 67, 9-26.
Aparin, B. F., Sukhacheva, Y. U. (2015). Classification of urban soils in the system of the Russian and international classification of soils. Bulletin of the Soil Instit.,79, 53-72. 
Blott, S.J., & Pye, K. (2001). Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surface Processes and Landfor., 26, 1237-1248.
Cevik, U., Damla, N., & Nezir, S. (2007). Radiological characterization of Cayırhan coal-fired power plant in Turkey. Fuel., 86(16), 2509-2513.
Chubirko, M. I., Klepikov, O.V., Kurolap S. A., Kuzmichev, M. K., Studenikina, E. M. (2019). Estimation of the equivalent dose rate of gamma radiation in the open territory of the city of Voronezh. Radiation Hygien.; 12(4), 66-71. (In Russ.)
Dauwalter, V. A., & Kashulin, N. A. (2016). Heavy Metals in Lake Sediments of the Central and Southwest Parts of the Murmansk Region. Herald of the KSC of the RAS., 3(26), 73-88. (In Russ.)
El Mamoney, M. H., & Khater, A. E. M. (2004). Environmental Characterization and Radioecological Impacts of Non-Nuclear Industries on the Red Sea Coast. Journal of Environmental Radioact., 73, 151-168.
Fedorets, N. G., Bakhmet, O. N., Medvedeva, M. V., Akhmetova, G. V., Novikov, S. G., Tkachenko, U. N., & Solodovnikov, A. N. (2015). Heavy metals in soils of Karelia. (Forest Institute of KarRC RAS. KRC of the RAS, Petrozavodsk). (In Russ.)
Gablin, V. A., Paramonova T. I., Verbova L. F., Gabrielyan S. V., & Mitronova U. N. (2010). Composition of soils and issues of radiation rationing. Geology and Explorat., 62-67. (In Russ.)
Huang ,Y., Lu, X., Ding, X., Feng, T. (2015). Natural radioactivity level in beach sand along the coast of Xiamen Island, China. Mar. Pollut. Bull., 91(1), 357-361.
Ibraheem, A. A., El-Taher, A., & Alruwaili, M. H. M. (2018). Assessment of natural radioactivity levels and radiation hazard indices for soil samples from Abha, Saudi Arabia. Results in Physic., 11, 325–330. 
Iglovsky, S. A., Bazhenov, A. V., Kriauciunas, V. V. et al. (2023a). Features of the spatial distribution of 137Cs, 40K, 226Ra, 232Th in the soils of the city of Kirovsk (Murmansk region). Arctic: Ecology and Econom., 13(3), 473-481. (In Russ.)
Iglovsky, S. A., Bazhenov, A. V., Yakovlev, E. Y. (2023b). Specific spatial distribution of 137Cs, 40K, 226Ra, 232Th in soils of the city of Polyarnyye Zori (Murmansk region). Vestnik of Geoscienc., 10(346), 51-57. (In Russ.)
Iglovsky, S. A., Bazhenov, A. V., Yakovlev, E. Yu. (2023c). Spatial distribution of 137Cs, 40K, 226Ra, 232Th in soils of Olenegorsk city (Murmansk region). The Journal of Soils and Environ., 6(4), e225. (In Russ.)
Md Sirajul Islam, A. A., Hossain Miah, Md. M., Ahmed, M., Hossain, S., & Khandaker, M. U. (2021). The presence of terrestrial radionuclides in the Karnaphuli and Halda river sediments and concomitant hazards to the dwellers. International Journal of Environmental Analytical Chemist., 103(16), 3779–3789. 
Jeelani, G., Hassan, W., Saleem, M., Sahu S. K., Pandit G. G., & Lone A. (2022). Trace metal and radionuclide geochemistry of soils in western Himalaya: implication to ecological and radiological hazards. Environ. Earth. Sci., 81:205.
Kiselev, G. P., Yakovlev, E. Y., Druzhinin, S. V., Zykov, S. B., Kiseleva, I.M., &  Bagenov, A.V. (2018). Radioactive investigation of the impact the Kostomuksha mining enterprise on the radioecological state of adjacent areas, the republic of Karelia, the Russian federation. Environ. Earth Science., 77(7), 264. (In Russ.)
Kriauciunas, V. V., Kuznetsova, I. A., Kotova, E. I., Iglovsky S. A., Mironenko K. A., Sukhanov S. G. (2020). Natural and technogenic radionuclides in soils in a small Russian arctic town. Human Ecol., 5, 11-20. (In Russ.)
Kriauciunas, V. V., Iglovsky, S. A., Kuznetsova, I. A., Shakhova, E. V., Bazhenov, A. V., Mironenko, K. A. (2018). Spatial distribution of natural and anthropogenic radionuclides in the soils of Naryan-Mar. Arctic Environmen. Resear., 18(3), 82-89.
Kuzmenkova, N., & Vorobyeva, T. (2015). Landscape-geochemical mapping of territory in the north-west of Kola Peninsula. J. of geochemical explor., 154, 194-199. 
Melentiev, G. B. (2021). Natural radioactivity of rare-metal specialized mineral raw materials and urbanized territories of the Karelian-Kola region as a factor in their radioecological assessment. Proc. KarRC RAS., 2, 27-43. (In Russ.)
Mohamed C., Wan Mahmood, Ahmad Z., Ishak A. K. (2010). Enrichment of natural radium isotopes in the southern South China Sea surface sediments. Coastal Marine Science., 34, 165-171. 
Monged, M. H. E., Abu Khatita, A. M., El-Hemamy, S. T., Sabet, H. S., & Al-Azhary, M. A. E. (2020). Environmental assessment of radioactivity levels and radiation hazards in soil at North Western-Mediterranean Sea coast Egypt. Environmental Earth Science., 79(16), 1-14.
Motuzova, G. V., Lukina, N. V., Nikonov, V. V., Dauval’ter M. V., & Zorina A. V. (2004). Effect of Natural and Anthropogenic Factors on Soils, Soil Water, and Subsoil Water in Kola Peninsula. Water Resour., 31, 297-302. (In Russ.)
Myasnikova, N. A., & Potakhin. M. S. (2021). Granulometric composition of bottom sediments of Lake Torosyarvi (White Sea basin). Proceedings of Voronezh State University. Series: Geography. Geoecol., 1, 45-56. (In Russ.)
Nikanov, A. N., Gudkov, A. B., Shelkov, M. V., Popova, O. N., Shcherbina, F. A., Shcherbina, A. F. (2019). Characteristics of the radiation background of the Arctic territory in the area of the mining and processing complex. Journal Human Ecol., 5, 11-14. (in Russ.) 
Ortec, Gem Series HPGe Coaxial Detector System. ORTEC Part Number 803406 Manual. Revision G. (2008).
Puhakainen, M., Heikkinen, T., Steinnes, E., Thørring, H., Outola I. (2005). Distribution of 90Sr and 137Cs in Arctic soil profiles polluted by heavy metals. J. Environ Radioact., 81(2-3), 295-306. 
Reza, M., Hassanzadeh S., Kamali M., & Reza H. (2009). 238U, 232Th, 40K and 137Cs activity concentrations along the southern coast of the Caspian Sea, IranMar. Pollut. Bull. 58(5), 658-662.
RS-700 mobile radiation monitoring system for vehicle, airborne or fixed location real-time search, surveillance and data recording. Retrieved August 26, 2024, from http://www.radiationsolutions.ca/wp-content/uploads/2019/02/RS700-Feb-2019.pdf.
Rules of land use and construction of the municipal district of the city of Monchegorsk with the subordinate territory of the Murmansk region, approved by the order of the Ministry of urban planning and development of the Murmansk region from 01.07.2024 № 111. Retrieved August 26, 2024, from https://monchegorsk.gov-murman.ru/vlast/administratsiya/sostav/otdel-arkhitektury-i-gradostroitelstva/deyatelnost/pravila-zemlepolzovaniya-i-zastroyki/index.php (In Russ.)
Sam, A. K., ElGanawi, A. A., Ahamed, M. M. O., & ElKhangi F. A. (1998). Distribution of some natural and anthropogenic radionuclides in Sudanese harbour sediments. J. Radioanal Nucl. Chem., 237, 103–107.
Sotiropoulou, M., & Florou, H. (2021). Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece. J. of Environmental Radioactivity., 237, 106666. 
UNSCEAR (2000). Sources and Effects of Ionizing Radiation. Report to General Assembly, with Scientific Annexes. (United Nations, New York).
Valentine, P. C. (2019). Sediment classification and the characterization, identification, and mapping of geologic substrates for the glaciated Gulf of Maine seabed and other terrains, providing a physical framework for ecological research and seabed management: U.S. Geological Survey Scient. Invest. Report., 5073; 37. 
Vorobyeva, T. A., Evseev, A. V., & Kuzmenkova, N. V. (2017). Radiogeochemical studies of the state of the landscapes of the Kola Peninsula. Arctic: Ecology and Economy., 2:(26), 17-26. (In Russ.)
Yakovlev, E., Puchkov, A., & Bykov, V. (2021). Assessing the natural and anthropogenic radionuclide activities of the Pechora River estuary: Bottom sediments and water (Arctic Ocean Basin). Marine Pollution Bulletin., 172, 112765.
Yakovlev, E., & Puchkov, A. (2020). Assessment of current natural and anthropogenic radionuclide activity concentrations in the bottom sediments from the Barents Sea. Marine Pollution Bulletin., 160, 111571. 
Yakovlev, E., Puchkov, A., Druzhinin, S. (2023). Evaluation of current natural and anthropogenic radionuclide activity in coastal area bottom sediments of the Barents Sea (North of the Kola Peninsula). Marine Pollution Bulletin., 189, 114809. 
Zykov, S. B., & Druzhinin, S. V. (2012 december). Radiological assessment of the state of the Arctic and subarctic territories in the western sector of the Russian Arctic. Paper presented at the Arctic floating university-2012. Materials of a comprehensive scientific and educational expedition: in 2 parts. Northern (Arctic) Federal University named after M. V. Lomonosov; Northern Directorate for Hydrometeorology and Environmental Monitoring; All-Russian public organization “Russian Geographical Society”. Arkhangelsk. 287-335.