Aliko, V., Multisanti, C. R., Turani, B., & Faggio, C. (2022). Get rid of marine pollution: bioremediation an innovative, attractive, and successful cleaning strategy. Sustainability, 14(18), 11784.
Al-Saleh, E., and Obuekwe, C. O. (2014). Biosurfactant Production by Bacillus subtilis B30 and Its Application in Enhancing Alkane Biodegradation. Biomed Research International, 2014, 863580.
Baig, Z. T., Abbasi, S. A., Memon, A. G., Naz, A., & Soomro, A. F. (2022). Assessment of degradation potential of Pseudomonas species in bioremediating soils contaminated with petroleum hydrocarbons. Journal of Chemical Technology & Biotechnology, 97(2), 455-465.
Bento, F. M., Camargo, F. A., Okeke, B. C., and Frankenberger Jr, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation, and bioaugmentation. Bioresource Technology, 96(9), 1049-1055.
Chandra, R., Nautiyal, S., and Ward, O. P. (2021). Biodegradation of petroleum hydrocarbons. In Microbial degradation of xenobiotics (pp. 83-103). Springer, Singapore.
Das, N., and Mukherjee, A. K. (2020). Microbial biosurfactants as additives for enhancing hydrocarbon biodegradation. Frontiers in microbiology, 11, 374.
Eroğlu, E., and Yıldız, S. (2021). Biochemical and structural properties of alcohol dehydrogenase enzymes. In Alcohol dehydrogenases (pp. 1-29). Humana, New York, NY.
Goveas, L. C., Nayak, S., & Selvaraj, R. (2022). Concise review on bacterial degradation of petroleum hydrocarbons: Emphasis on Indian marine environment. Bioresource Technology Reports, 19, 101136.
Hamed, S. R., and Elbendary, A. A. (2018). Identification and molecular characterization of hydrocarbon-degrading bacteria isolated from petroleum-contaminated sites. Journal of Genetic Engineering and Biotechnology, 16(1), 209-216.
Haritash, A. K., and Kaushik, C. P. (2019). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1-3), 1-15.
Hussar, E., Richards, S., Lin, Z.Q., Dixon, R.P., Johnson, K.A. (2012) Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA. Water Air Soil Pollut. 223(9):5535-5548. doi: 10.1007/s11270-012-1265-7. PMID: 23243323; PMCID: PMC3521527.
Ivanova, A. A., Mullaeva, S. A., Sazonova, O. I., Petrikov, K. V., & Vetrova, A. A. (2022). Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas. Folia Microbiologica, 67(4), 591-604.
Kaczorek, E., Jesionowski, T., Giec, A., and Olszanowski, A. (2012). Cell surface properties of Pseudomonas stutzeri in the process of diesel oil biodegradation. Biotechnol. Lett. 34, 857–862. doi: 10.1007/s10529-011-0835-x
Kłosowska-Chomiczewska, D., Czerwonka, G., and Siwicki, A. K. (2020). Effect of stationary phase bacteria on biological activity and immune response of neutrophils in fish. Aquaculture Research, 51(1), 373-378.
Krasowska, A., and Sigler, K. (2014). How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol. 4:112. doi: 10.3389/fcimb.2014.00112
Kumar, A., Goud, V. V., and Venkateswaran, G. (2022). Microbial Emulsification: A Review of Mechanisms, Factors Influencing Emulsification, and Applications. Frontiers in Microbiology, 12, 823.
Kumar, A., Jindal, T., and Sharma, S. (2022). Biodegradation of aliphatic hydrocarbons by Pseudomonas aeruginosa: A comprehensive review. Chemosphere, 287, 131823.
Liu, H., Yang, G., Jia, H., & Sun, B. (2022). Crude oil degradation by a novel strain Pseudomonas aeruginosa AQNU-1 isolated from an oil-contaminated lake wetland. Processes, 10(2), 307.
Norat, C. E. T., Pragana, L. G., Jaramillo, L. Y. A., de Almeida Travassos, R., & Vasconcelos, U. (2022). Hydrocarbonoclastic activity in bacterial biofilms: A systematic study emphasizing pseudomonads. Conjecturas, 22(12), 548-562.
Onyegeme-Okerenta, B. M., West, O. L., & Chuku, L. C. (2022). Concentration, dietary exposure and human health risk assessment of total petroleum and polycyclic aromatic hydrocarbons in seafood from coastal communities in Rivers State, Nigeria. Scientific African, 16, e01186.
Parthipan, P., Elumalai, P., Sathishkumar, K., Sabarinathan, D., Murugan, K., Benelli, G., Rajasekar, A. (2017) Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. Biotech., 7(5):278. doi: 10.1007/s13205-017-0902-7. Epub 2017 Aug 7. PMID: 28794933; PMCID: PMC5545984.
Patel, A. K., Singhania, R. R., Albarico, F. P. J. B., Pandey, A., Chen, C. W., & Dong, C. D. (2022). Organic wastes bioremediation and its changing prospects. Science of the Total Environment, 824, 153889.
Patel, A.B., Shaikh, S., Jain, K.R., Desai, C. and Madamwar, D. (2020) Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol., 11:562813. doi: 10.3389/fmicb.2020.562813. PMID: 33224110; PMCID: PMC7674206.
Priyadarshanee, M., Mahto, U., & Das, S. (2022). Mechanism of toxicity and adverse health effects of environmental pollutants. In Microbial biodegradation and bioremediation (pp. 33-53). Elsevier.
Qin, Z., Tan, Z., and Huang, J. (2022). Alkane hydroxylases and the biodegradation of n-alkanes in petroleum hydrocarbon-contaminated environments. Applied Microbiology and Biotechnology, 106(1): 193-203.
Sharma, K., Singh, V., Pandit, S., Thapa, B. S., Pant, K., & Tusher, T. R. (2022). Isolation of Biosurfactant-Producing Bacteria and Their Co-Culture Application in Microbial Fuel Cell for Simultaneous Hydrocarbon Degradation and Power Generation. Sustainability, 14(23), 15638.
Song, H. G., Li, Y. X., Wang, J. Y., Zhou, J., and Xiong, J. (2020). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Pseudomonas aeruginosa. RSC Advances, 10(25), 14811-14819
Tavakoli, A. and Hamzah, A. (2016)Characterization and evaluation of catechol oxygenases by twelve bacteria, isolated from oil contaminated soils in Malaysia Biological Journal of Microorganism, 5(20): 71- 80
Ureta Suelgaray, F. J., Aguilar Beltramo, D. M., Lavado, R. S., & Chiocchio, V. M. (2022). Dark septate endophytes (DSE): potential bioremedial promoters of oil derivatives. International Journal of Phytoremediation, 24(3), 255-262.
Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223, 277–286. doi: 10.1016/j.biortech.2016.10.037
Vatsa, P., Sanchez, L., Clement, C., and Baillieul, F. (2019). Fungal and Bacterial Elicitors: An Updated Overview of Prospects of Use. Journal of Fungi, 5(2), 48.
Wasmund, K., Burns, K. A., Kurtböke, D. I., and Bourne, D. G. (2009). Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea. Australia. Appl. Environ. Microbiol. 75, 7391–7398. doi: 10.1128/AEM.01370-09.
Yang, Y., Wang, J., Liao, J., Xie, S., and Huang, Y. (2015). Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl. Microbiol. Biotechnol. 99, 1935–1946. doi: 10.1007/s00253-014-6074-z
Zhao, Y., Li, C., and Zhao, X. (2021). Biodegradation of aliphatic hydrocarbons and potential applications in petroleum-contaminated environments. Journal of Environmental Management, 278, 111524.