Improving the Lifetime of Wireless Sensor Networks for Air Quality Monitoring Using Metaheuristic Algorithms

Document Type : Original Research Paper

Authors

1 Department of Environmental Engineering, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Department of Mechanical Engineering, Payame Noor University, Tehran, Iran

10.22059/poll.2024.380231.2490

Abstract

Wireless sensor networks (WSNs) are crucial for environmental monitoring, particularly for assessing air quality. However, optimizing energy consumption remains a significant challenge due to the limited energy resources of the sensor nodes, which adversely affects the network's performance and lifespan. This study aims to enhance the longevity and efficiency of WSNs by implementing metaheuristic algorithms, specifically Ant Lion Optimization (ALO) and Cheetah Optimization (CO), for effective energy management through clustering strategies. Utilizing simulations, we compared the performance of ALO against CO in terms of energy efficiency, network lifespan, and resilience within heterogeneous network conditions. The results indicate that ALO optimizes data transmission by reducing network traffic through efficient cluster communication. Additionally, ALO's scalability enables the network to adapt to changing sensor deployments, while data aggregation at the cluster head level further minimizes energy consumption. This load balancing ensures a more even distribution of energy usage, further ALO outperforms CO by extending network lifespan, improving energy management, and providing better scalability. The findings suggest that ALO is a robust approach for optimizing clustering and energy consumption in WSNs.

Keywords

Main Subjects


Abbas, R., Shehata, N., Mohamed, E. A., Salah, H., & Abdelzaher, M. (2021). Environmental safe disposal of cement kiln dust for the production of geopolymers. Egypt. J. Chem., 64(12), 7529–7537.
Abdelzaher, M., & Awad, M. M. (2022). Sustainable development goals for the circular economy and the water-food nexus: full implementation of new drip irrigation technologies in upper Egypt. Sustainability, 14(21), 13883.
Abdelzaher, M., Farahat, E. M., Abdel-Ghafar, H. M., Balboul, B. A., & Awad, M. M. (2023). Environmental policy to develop a conceptual design for the water–energy–food nexus: A case study in Wadi-Dara on the Red Sea Coast, Egypt. Water, 15(4), 780.
Akbari, M. A., Zare, M., Azizipanah-Abarghooee, R., Mirjalili, S., & Deriche, M. (2022). The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci. Rep., 12(1), 10953.
Amutha, J., Sharma, S., & Sharma, S. K. (2022). An energy-efficient cluster-based hybrid optimization algorithm with static sink and mobile sink node for wireless sensor networks. Expert Syst. Appl., 203, 117334.
Behnamfar, M. R., Barati, H., & Karami, M. (2021). Antlion Optimization Algorithm for optimal self-scheduling unit commitment in power system under uncertainties. J. Oper. Autom. Power Eng., 9(3), 226–241.
Chen, J., Wang, B., Huang, S., & Song, M. (2020). The influence of increased population density in China on air pollution. Sci. Total Environ., 735, 139456.
Dixit, E., & Jindal, V. (2020). Survey on recent cluster-originated energy efficiency routing protocols for air pollution monitoring using WSN. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). IEEE, pp. 160–166.
Dixit, E., & Jindal, V. (2022). IEESEP: An intelligent energy-efficient stable election routing protocol in air pollution monitoring WSNs. Neural Comput. Appl., 34(13), 10989–11013.
Fahmi, N., Prayitno, E., Musri, T., Supria, S., & Ananda, F. (2022). An implementation of environmental monitoring real-time IoT technology. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, pp. 1–4.
Gupta, A., Gulati, T., & Bindal, A. K. (2022). WSN-based IoT applications: A review. 2022 10th International Conference on Emerging Trends in Engineering and Technology-Signal and Information Processing (ICETET-SIP-22). IEEE, pp. 1–6.
Hassan, M. N., Islam, M. R., Faisal, F., Semantha, F. H., Siddique, A. H., & Hasan, M. (2020). An IoT-based environment monitoring system. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). IEEE, pp. 1119–1124.
Itaya, S., Ohori, F., Osuga, T., & Matsumura, T. (2023). Smart monitoring of wireless environments with real-time aggregation and analysis. Procedia Comput. Sci., 220, 86–93.
Kandris, D., Nakas, C., Vomvas, D., & Koulouras, G. (2020). Applications of wireless sensor networks: An up-to-date survey. Appl. Syst. Innov., 3(1), 14.
Ketshabetswe, L. K., Zungeru, A. M., Mangwala, M., Chuma, J. M., & Sigweni, B. (2019). Communication protocols for wireless sensor networks: A survey and comparison. Heliyon, 5(5).
Kim, J.-Y., Sharma, T., Kumar, B., Tomar, G., Berry, K., & Lee, W.-H. (2014). Intercluster ant colony optimization algorithm for wireless sensor network in dense environment. Int. J. Distrib. Sens. Netw., 10(4), 457402.
Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environ. Int., 74, 136–143.
Lin, D., Min, W., & Xu, J. (2020). An energy-saving routing integrated economic theory with compressive sensing to extend the lifespan of WSNs. IEEE Internet Things J., 7(8), 7636–7647.
Malik, A., Singh, S., Manju, Kumar, M., & Gill, S. S. (2023). IoT-based sensor network clustering for intelligent transportation system using meta-heuristic algorithm. Concurrency Comput. Practice Experience, e8193.
Matin, M. A. (2012). Wireless sensor networks: Technology and protocols. BoD–Books on Demand.
Mirjalili, S. (2015). The ant lion optimizer. Adv. Eng. Softw., 83, 80–98.
Monjardino, J., Barros, N., Ferreira, F., Tente, H., Fontes, T., Pereira, P., & Manso, C. (2018). Improving air quality in Lisbon: Modeling emission abatement scenarios. IFAC-PapersOnLine, 51(5), 61–66.
Muñiz, I., & Galindo, A. (2005). Urban form and the ecological footprint of commuting: The case of Barcelona. Ecol. Econ., 55(4), 499–514.
Pal, R., Saraswat, M., Kumar, S., Nayyar, A., & Rajput, P. K. (2024). Energy-efficient multi-criterion binary grey wolf optimizer based clustering for heterogeneous wireless sensor networks. Soft Comput., 28(4), 3251–3265.
Pio, C., Alves, C., Nunes, T., Cerqueira, M., Lucarelli, F., Nava, S., & Calzolai, G. (2020). Source apportionment of PM2.5 and PM10 by ionic and mass balance (IMB) in a traffic-influenced urban atmosphere in Portugal. Atmos. Environ., 223, 117217.
Rayalu, G. V. K., Chowdary, P. N., Nadella, M., Harsha, D., Sathvika, P., & Gowri, B. G. (2023). A Zigbee-based cost-effective home monitoring system using WSN. 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, pp. 1–7.
Santos, F. M., Gómez-Losada, Á., & Pires, J. C. (2019). Impact of the implementation of Lisbon low emission zone on air quality. J. Hazard. Mater., 365, 632–641.
Schweitzer, L., & Zhou, J. (2010). Neighborhood air quality, respiratory health, and vulnerable populations in compact and sprawled regions. J. Am. Plann. Assoc., 76(3), 363–371.
Sharma, S., & Kumar, V. (2023). Cheetah Optimizer for multi-objective optimization problems.
Sharmin, S., Ahmedy, I., & Md Noor, R. (2023). An energy-efficient data aggregation clustering algorithm for wireless sensor networks using hybrid PSO. Energies, 16(5), 2487.
Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727.
Sinde, R., Begum, F., Njau, K., & Kaijage, S. (2020). Refining network lifetime of wireless sensor networks using energy-efficient clustering and DRL-based sleep scheduling. Sensors, 20(5), 1540.
Vijayan, K., Kshirsagar, P. R., Sonekar, S. V., Chakrabarti, P., Unhelkar, B., & Margala, M. (2024). Optimizing IoT-enabled WSN routing strategies using whale optimization-driven multi-criterion correlation approach employing a reinforcement learning agent. Opt. Quantum Electron., 56(4), 568.
Wang, S., Zhou, C., Wang, Z., Feng, K., & Hubacek, K. (2017). The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J. Clean. Prod., 142, 1800–1809.
Xiuwu, Y., Qin, L., Yong, L., Mufang, H., Ke, Z., & Renrong, X. (2019). Uneven clustering routing algorithm based on glowworm swarm optimization. Ad Hoc Netw., 93, 101923.
Yang, B., Ding, L., & Tian, Y. (2021). The influence of population agglomeration on air pollution: An empirical study based on the mediating effect model. IOP Conf. Ser.: Earth Environ. Sci., IOP Publishing, p. 012014.