Abdoli, M. A., & Ghasemzadeh, R. (2024). Evaluation and optimization of hydrothermal carbonization condition for hydrochar and methane yield from anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Fuel, 355, 129531.
Adeniyi, A. G., Adeyanju, C. A., Emenike, E. C., Otoikhian, S. K., Ogunniyi, S., Iwuozor, K. O., & Raji, A. A. (2022). Thermal energy recovery and valorisation of Delonix regia stem for biochar production. Environmental Challenges, 9, 100630.
Álvarez-Murillo, A., Román, S., Ledesma, B., & Sabio, E. (2015). Study of variables in energy densification of olive stone by hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis, 113, 307–314.
Amenyeku, G., Cobbina, S. J., Asare, W., & Teye, G. K. (2024). Hydrothermal carbonization of organic waste using faecal sludge as a water source: Response surface methodology-Box Behnken design. Environmental Challenges, 15, 100900.
Anupam, K., Sharma, A. K., Lal, P. S., Dutta, S., & Maity, S. (2016). Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding. Energy, 106, 743–756.
Fakudze, S., & Chen, J. (2023). A critical review on co-hydrothermal carbonization of biomass and fossil-based feedstocks for cleaner solid fuel production: Synergistic effects and environmental benefits. Chemical Engineering Journal, 457, 141004.
Ghasemzadeh, R., Abdoli, M. A., Bozorg Haddad, O., & Pazoki, M. (2022). The Impact of Hydrothermal Carbonization Treatment on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Environmental Energy and Economic Research, 6(1), 1–10.
Guo, S., Mu, J., Gao, L., Ge, L., & Lisak, G. (2024). Enhancing energy yield and reducing environmental impact through co-hydrothermal carbonization of undehydrated sewage sludge and fungus bran. Journal of Environmental Chemical Engineering, 12(5), 114051.
Hämäläinen, A., Kokko, M., Kinnunen, V., Hilli, T., & Rintala, J. (2021). Hydrothermal carbonisation of mechanically dewatered digested sewage sludge—Energy and nutrient recovery in centralised biogas plant. Water Research, 201, 117284.
Heidary, R. (2017). Effect of temperature on hydrothermal gasification of paper mill waste, case study: the paper mill in North of Iran. Journal of Environmental Studies, 43(1), 59–71.
Kang, K., Nanda, S., Sun, G., Qiu, L., Gu, Y., Zhang, T., Zhu, M., & Sun, R. (2019). Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar. Energy, 186, 115795.
Kannan, S., Gariepy, Y., & Raghavan, G. S. V. (2017). Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Waste Management, 65, 159–168.
Kruse, A., Funke, A., & Titirici, M.-M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 17(3), 515–521.
Liu, Z., & Balasubramanian, R. (2012). Hydrothermal carbonization of waste biomass for energy generation. Procedia Environmental Sciences, 16, 159–166.
Lu, X., Ma, X., & Chen, X. (2021). Co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass: fuel properties and heavy metal transformation behaviour of hydrochars. Energy, 221, 119896.
Lynam, J. G., Coronella, C. J., Yan, W., Reza, M. T., & Vasquez, V. R. (2011). Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 102(10), 6192–6199.
Maleki Delarestaghi, R., Ghasemzadeh, R., Mirani, M., & Yaghoubzadeh, P. (2018). The comparison between different waste management methods of Tabas city with life cycle assessment assessment. Journal of Environmental Science Studies, 3(3), 782–793. Retrieved from https://www.jess.ir/article_81252.html
Nizamuddin, S., Jaya Kumar, N. S., Sahu, J. N., Ganesan, P., Mubarak, N. M., & Mazari, S. A. (2015). Synthesis and characterization of hydrochars produced by hydrothermal carbonization of oil palm shell. The Canadian Journal of Chemical Engineering, 93(11), 1916–1921.
Nizamuddin, S., Mubarak, N. M., Tiripathi, M., Jayakumar, N. S., Sahu, J. N., & Ganesan, P. (2016). Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel, 163, 88–97.
Parshetti, G. K., Liu, Z., Jain, A., Srinivasan, M. P., & Balasubramanian, R. (2013). Hydrothermal carbonization of sewage sludge for energy production with coal. Fuel, 111, 201–210.
Pauline, A. L., & Joseph, K. (2020). Hydrothermal carbonization of organic wastes to carbonaceous solid fuel–A review of mechanisms and process parameters. Fuel, 279, 118472.
Pazoki, M., Ghasemzadeh, R., Pazoki, M., & Ghasemzadeh, R. (2020). Leachate quality. Municipal Landfill Leachate Management, 101–127.
Pazoki, M., Ghasemzadeh, R., Yavari, M., & Abdoli, M. A. (2018). Analysis of photocatalyst degradation of erythromycin with titanium dioxide nanoparticle modified by silver. Nashrieh Shimi va Mohandesi Shimi Iran, 37(1), 63–72.
Reza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J. G., & Mumme, J. (2014). Hydrothermal carbonization of biomass for energy and crop production. Appl. Bioenergy, 1(1), 11–29.
Reza, M. T., Lynam, J. G., Uddin, M. H., & Coronella, C. J. (2013). Hydrothermal carbonization: Fate of inorganics. Biomass and Bioenergy, 49, 86–94.
Sabio, E., Álvarez-Murillo, A., Román, S., & Ledesma, B. (2016). Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Management, 47, 122–132.
Tag, A. T., Duman, G., & Yanik, J. (2018). Influences of feedstock type and process variables on hydrochar properties. Bioresource Technology, 250, 337–344.
Tajfar, I., Pazoki, M., Pazoki, A., Nejatian, N., & Amiri, M. (2023). Analysis of Heating Value of Hydro-Char Produced by Hydrothermal Carbonization of Cigarette Butts. Pollution, 9(3), 1273–1280.
Wang, R., Lin, K., Peng, P., Lin, Z., Zhao, Z., Yin, Q., & Ge, L. (2022). Energy yield optimization of co-hydrothermal carbonization of sewage sludge and pinewood sawdust coupled with anaerobic digestion of the wastewater byproduct. Fuel, 326, 125025.
Yan, M., Chen, F., Li, T., Zhong, L., Feng, H., Xu, Z., Hantoko, D., & Wibowo, H. (2023). Hydrothermal carbonization of food waste digestate solids: Effect of temperature and time on products characteristic and environmental evaluation. Process Safety and Environmental Protection, 178, 296–308.
Zhang, X., Gao, B., Zhao, S., Wu, P., Han, L., & Liu, X. (2020). Optimization of a “coal-like” pelletization technique based on the sustainable biomass fuel of hydrothermal carbonization of wheat straw. Journal of Cleaner Production, 242, 118426.
Zheng, X., Shen, M., Ying, Z., Feng, Y., Wang, B., & Dou, B. (2022). Correlating phosphorus transformation with process water during hydrothermal carbonization of sewage sludge via experimental study and mathematical modelling. Science of the Total Environment, 807, 150750.