Integrated Assessment of Groundwater Contamination in the Pre-Volga Region (Russia) and Identification of Potential Health Risks to the Public

Document Type : Original Research Paper

Authors

1 N. Lavrov Federal Centre for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Nikolsky Avenue, 20, P.O.Box 163020, Arkhangelsk, Russia

2 Northern (Arctic) Federal University, Northern Dvina Emb. 17, P.O.Box 163000, Arkhangelsk, Russia

Abstract

Contamination of drinking groundwater with toxic trace elements poses a threat to public health. The present study analyzed samples of various groundwaters from the Pre-Volga Region, Russia. The groundwaters studied in the Pre-Volga Region are classified into four hydro- chemical facies based on the proportion of cations and anions: (I) gypsum waters, (II) mirabilite waters, (III) waters altered by ion exchange, and (IV) fresh infiltration waters. Gypsum groundwaters exhibit relatively high concentrations of Al, Mn, Sr, Co, Cr and Fe, mirabilite waters contain elevated levels of Ni, Pb and As, sodic waters have high concentration levels of Cu and Fe, and hydrogen carbonate waters are enriched in Zn, Ba and V. Most samples of gypsum and mirabilite waters exhibit high salinity, rendering them inappropriate for human consumption. Pollution index of groundwater (PIG), trace metal evaluation index (TMEI), contamination index (CI), trace metal pollution index (TMPI), trace metal toxicity index (TMTI), non-carcinogenic health risk (HI) and carcinogenic health risk (CR) were used to assess the level of pollution in the study area. The calculation of indices indicates that due to natural and anthropogenic pollution, the groundwater of the Pre-Volga Region is primarily contaminated with high levels of SO42-, TDS, Fe, Mn, Al, Ni, and As to a greater extent, and lesser concentrations of Ba, Pb, and Co. The study's findings will furnish valuable insights into crafting comprehensive strategies for safeguarding the quality of subterranean potable water in the Pre-Volga Region.

Keywords

Main Subjects


Ahirvar, B. P., Das, P., Srivastava, V., & Kumar, M. (2023). Perspectives of heavy metal pollution indices for soil, sediment, and water pollution evaluation: An insight. Tot. Environ. Res. Them., 6; 100039.
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem., 2019(4).
ATSDR (2019). Toxic substance portal: Toxicological profiles. Retrieved February 5, 2021, from https://www.atsdr.cdc.gov/spl/index
Avila, D. S., Puntel, R. L., & Aschner, M. (2013). Manganese in Health and Disease. In A. Sigel, H. Sigel, & R. K. O. Sigel  (Eds.), Interrelations between Essential Metal Ions and Human Diseases (pp. 199-227).
Ayejoto, D. A., Egbueri, J. C., Enyigwe, M. T., Chiaghanam, O. I., & Ameh, P. D. (2021). Application of HMTL and novel IWQI models in rural groundwater quality assessment: A case study in Nigeria. Tox. Rev., 41(3); 918–932.
Becaria, A., Campbell, A., & Bondy, S. C. (2002). Aluminum as a toxicant. Toxicol. Ind. Health., 18(7); 309–320.
Berg, D., Gerlach, M., Youdim, M. B., Double, K. L., Zecca, L., & Riederer, P. (2001). Brain iron pathways and their relevance to Parkinson’s disease. J. Neurochem., 79(2); 225–236.
B.I.S. (2012). Indian Standard Specification for Drinking Water. New Delhi, India.
Burov, B. V., Gubareva, V. S., Esaulov, N. K. (Eds.) (2003). Geology of Tatarstan: Stratigraphy and Tectonics. (Moscow: GEOS)
Centers for Disease Control and Prevention (CDC) (2003). Barium toxicity after exposure to contaminated contrast solution — Goias State, Brazil. Morbidity and Mortality Weekly Report, 52(43), 1047–1048.
Ciner, F., Daanoba, E., Burak, S., & Senbas, A. (2020). Geochemical and multivariate statistical evaluation of trace elements in groundwater of Nigde Municipality, South - Central Turkey: implications for arsenic contamination and human health risks assessment. Arch. Environ. Contam. Toxicol., 80; 164–182.
Dahiya, V. (2022). Heavy metal toxicity of drinking water: A silent killer. GSC Biol. Pharm. Sci., 19(1); 20–25.
Djebassi, T., Abdeslam, I., & Fehdi, Ch. (2021). Groundwater quality assessment, using pollution index of groundwater (PIG) from a semi-arid basin, Tebessa region (north-east of Algeria). J. Mater. Environ. Sci., 12(8); 1046–1056.
Egbueri, J. C. (2020). Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): a case study. Groundw. Sustain. Dev., 10; 100292.
Egbueri, J. C., Ukah, B. U., Obido, O. E., & Unigwe, C. O. (2020). A chemometric approach to source apportionment, ecological and health risk assessment of heavy metals in industrial soils from southwestern Nigeria. Int. J. Environ. Anal. Chem., 102(14); 3399-3417.
Flaten, T. P. (2001). Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res. Bull., 55(2); 187-196.
Garza-Lombo, C., Pappa, A., Panayiotidis, M. I., Gonsebatt, M. E., & Franco, R. (2019). Arsenic-induced neurotoxicity: a mechanistic appraisal. J. Biol. Inorgan. Chem., 24(8); 1305–1316.
Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health, 17(3); 679.
Haque, A., Jewel, A. S., Hasan, J., Islam, M., Ahmed, S., & Alam, L. (2019). Seasonal variation and ecological risk assessment of heavy metal contamination in surface waters of the Ganges River (northwestern Bangladesh). Malaysian J. Anal. Sci., 23(2); 300–311.
He, S., & Wu, J. (2019). Hydrogeochemical characteristics, groundwater quality and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi County, northwest China. Exposure and Health, 11(2); 125–137.
Iqbal, J., & Shah, M. H. (2013). Health risk assessment of metals in surface water from freshwater Source Lakes, Pakistan. Hum. Ecol. Risk Asses. Int. J., 19(6); 1530–1543.
Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K., & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: a survey of literature. J. Environ. Manage., 217; 56–70.
Jamshaid, M., Khan, A. A., Ahmed, K., & Saleem, M. (2018). Heavy metal in drinking water its effect on human health and its treatment techniques - A review. Int. J. Biosci., 12(4); 223–240.
Kharlyamov, D. A., Smirnova, N. N., Sharafutdinov, R. N., & Mavrin, G. V. (2022). Assessment of the quality of groundwater in territories with different anthropogenic-technogenic load. International Journal of Scientific Research, 2(116), 28-33. (in Russian). 
Kowalska, J. B., Mazurek, R., Gasiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review. Environ. Geochem. Health, 40; 2395–2420.
Kravchenko, J., Darrah, T. H., Miller, R. K., Lyerly, H. K., & Vengosh, A. (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environ. Geochem. Health, 36; 797–814.
Kumar, V., Sharma, A., Pandita, S., Bhardwaj, R., Thukral, A. K., & Cerda, A. (2020). A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int. J. Sediment Res., 35(5); 516-526. 
Kumar, V., Daman Parihar, R., Sharma, A., Bakshi, P., Preet Singh Sidhu, G., Shreeya Bali, S., Karaouzas, I.,  Bhardwaj, R.,  Thukral, A. K.,  Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236; 124364.
Leyssens, L., Vinck, B., Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans. A review of the potential sources and systemic health effects. Toxicology, 387; 43–56.
Li, J., Li, F. D., Zhang, Q. Y., Zhao, G. S., Liu, Q., & Song, S. (2013). Groundwater trace metal pollution and health risk assessment in agricultural areas. Understanding Freshwater Quality Problems in a Changing World. Proceedings of H04, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden.), 250–256.
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci., 34(3); 101865. 
Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX, 6; 1642–1651.
Mthembu, P. P, Elumalai, V., Li, P., Uthandi, S., Rajmohan, N., & Chidambaram, S. (2022). Integration of heavy metal pollution indices and health risk assessment of groundwater in semi‑arid coastal aquifers, South Africa. Expos. Health, 14; 487–502.
Naveedullah, Hashmi, M. Z., Yu, C., Shen, H., Duan, D., Shen, C., Lou, L., & Chen, Y. (2014). Cncentrations and human health risk assessment of selected heavy metals in surface water of the siling reservoir watershed in Zhejiang province, China. Pol. J. Environ. Stud., 23(3); 801‒811.
Nokhrin, D. Yu., & Davydova, N. A. (2020). Hydrochemical characteristics and quality of groundwater in the Sosnovsky district of the Chelyabinsk region for irrigation purposes. Agrarian Bulletin of the Urals. Special issue “Biology and biotechnologies”; 56–69. (in Russian).
Nouri, J., Mahvi, A. H., Jahed, G. R., & Babaei, A. A. (2007). Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ. Geol., 55(6); 1337–1343. 
Nuriev, I. S. (2002). Hydrogeoecological situation in the Volga region of the Tatarstan Republic. Georesources, 3(11); 20-22. (in Russian).
Nuriev, I. S. (2010). Features of the formation of the chemical composition of groundwater in the zone of active water exchange in the southwest of Tatarstan. Dissertation for the degree of candidate of geological and mineralogical sciences. Kazan State University. (in Russian).
OEHHA (2020). California Office of Environmental Health Hazard Assessment (OEHHA). Technical Support Document for Cancer Potency Factors 2009, Appendix A: A lookup table containing unit risk and cancer potency values.
Ohiagu, F. O., Chikezie, P. C., Ahaneku, C. C., & Chikezie, C. M. (2022). Human exposure to heavy metals: toxicity mechanisms and health implications. Int. J. Mater. Eng., 6(2); 78‒87.
Packer, M. (2016). Cobalt cardiomyopathy: a critical reappraisal in light of a recent resurgence. Circ. Heart Fail., 9(12); e003604. 
Pandit, P., Mangala, P., Saini, A., Bangotra, P., Kumar, V., Mehra, R., & Ghosh, D. (2020). Radiological and pollution risk assessments of terrestrial radionuclides and heavy metals in a mineralized zone of the Siwalik region (India). Chemosphere, 254; 126857. 
Physical geography of the Republic of Tatarstan (2019). Educational and methodological material, Kazan Federal University. (in Russian).
Prasad, B., & Bose, J. (2001). Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ. Geol., 41; 183–188.
Rao, N. S. (2012). PIG: a numerical index for dissemination of groundwater contamination zones. Hydrol. Process., 26; 3344–3350.
Sahoo, B. P., & Sahu, H. B. (2022). Assessment of metal pollution on surface water using pollution indices and multivariate statistics: a case study of Talcher coalfield area. India. Appl. Water Sci., 12; 223. 
Saleh, H. N., Panahande, M., Yousefi, M., Asghari, F. B., Conti, G. O., Talaee, E., & Mohammadi, A. A. (2019). Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in Neyshabur plain, Iran. Biol. Trace Elem. Res., 190(4); 251–261. 
Sankhla, M. S., & Kumar, R. (2019). Contaminant of heavy metals in groundwater & Its toxic effects on human health & Environment. Int. J. Environ. Sci. Nat. Resour., 18(5); IJESNR.MS.ID.555996.
Santos, A., Alonso, E., Callejon, M., & Jimenez, J. C. (2002). Distribution of Zn, Cd, Pb and Cu metals in groundwater of the Guadiamar River Basin. Water Air Soil Pollut., 134(1–4); 273–283.
Setia, R., Dhaliwal, S. S., Singh, R., Kumar, V., Taneja, S., Kukal, S. S., & Pateriya, B. (2020). Impact assessment of metal contamination in surface water of Sutlej River (India) on human health risks. Environ. Pollut., 265; 114907. 
Singh, R., Venkatesh, A. S., Syed, T. H., Reddy, A. G. S., Kumar, M., & Kurakalva, R. M. (2017). Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of the Korba coalfield, Central India. Environ. Earth Sci., 76; 566. 
Singh, V., Singh, N., Rai, S. N., Kumar, A., Singh, A. K., Singh, M. P., Sahoo, A., Shekhar, S., Vamanu, E., & Mishra, V. (2023). Heavy metal contamination in the aquatic ecosystem: toxicity and its remediation using eco-friendly approaches. Toxics, 11; 147. 
Singha, S., Pasupuleti, S., Singha, S. S., & Kumar, S. (2020). Effectiveness of groundwater heavy metal pollution indices studies by deeplearning. J. Contam. Hydrol., 235; 103718. 
Song, S., Li, F., Li, J., & Liu, Q. (2013). Distribution and contamination risk assessment of dissolved trace metals in surface waters in the Yellow River Delta. Hum. Ecol. Risk Assess. Int. J., 19(6); 1514-1529. 
Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2021). Water Contamination by Heavy Metals and their Toxic Effect on Aquaculture and Human Health through Food Chain. Lett. Appl. NanoBioSci., 10(2); 2148–2166. 
Ullah, N., Ur Rehman, M., Ahmad, B., Ali, I., Younas, M., Aslam, M. S., Rahman, A.-U., Taheri, E., Fatehizadeh, A., & Rezakazemi, M. (2022).  Assessment of heavy metals accumulation in agricultural soil, vegetables and associated health risks. PLOS ONE. 17(6); e0267719.
USEPA (2004). Risk assessment guidance for superfund. Volume 1: Human health evaluation manual (Part E, Supplemental guidance for dermal risk assessment). Washington, USA. 
Venkatramanan, S., Chung, S. Y., Kim, T. H., Prasanna, M. V., & Hamm, S. Y. (2014). Assessment and distribution of metal contamination in groundwater: A case study of Basun city, Korea. Water Qual. Expos. Health, 7(2); 219–225.
Vinograd, N. A., Tokarev, I. V., & Stroganova, T. A. (2019). Features of the formation of groundwater in the main exploited aquifers of St. Petersburg and its environs according to data on chemical and isotopic composition. Bulletin of St. Petersburg University. Geosciences, 64(4); 575–597. (in Russian).
Wanda, E. M. M., Gulula, L. C., & Phiri, G. (2012). Determination of characteristics and drinking water quality index in Mzuzu City, Northern Malawi. Phys. Chem. Earth, Parts A/B/C, 50-52; 92–97.
Wang, D., Wu, J., Wang, Y., & Ji, Y. (2020). Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: analysis, assessment, and management. Expos. Health, 12(2); 307–322.
Wang, L., Li, P., Duan, R., & He, X. (2021). Occurrence, controlling factors and health risks of Cr6+ in groundwater in the Guanzhong Basin of China. Expos. Health, 14; 239–251.
Wei, J., Duan, M., Li, Y., Nwankwegu, A. S., Ji, Y., & Zhang, J. (2019). Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China. Sci. Rep., 9; 13100. 
WHO (2017). Guidelines for Drinking-water Quality (4th ed.), Geneva.
Yakovlev, E., Druzhinina, A., Druzhinin, S., Zykov, S., & Ivanchenko, N. (2021). Assessment of physical and chemical properties, health risk of trace metals and quality indices of surface waters of the rivers and lakes of the Kola Peninsula (Murmansk Region, North–West Russia). Environ. Geochem. Health, 44(6); 1-30.
Zakir, H. M., Sharmin, S., Akter, A., & Rahmana, S. (2020). Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: a case study of Jamalpur Sadar area, Bangladesh. Environ. Adv., 2; 100005.