Assessment of the Toxicological Safety of Soil after the Application of Zoohumus Hermetia illucens

Document Type : Original Research Paper

Authors

1 Vyatka State University, Moskovskaya Str. 36, Kirov, 610001, Kirov region, Russia

2 Agrotechnological Institute of Federal State Budgetary Educational Institution of Higher Education "Nothern Trans-Ural State Agricultural University", Respubliki Str. 7, Tyumen, Tyumen region, 625003, Russia

Abstract

The problem of finding environmentally friendly organic fertilizers is obvious. The aim of the work was to determine safe doses of Hermetia illucens L. zoohumus application to low fertility soil. A field experiment was conducted on plots of 1 m2. Zoohumus was applied to the soil in doses of 0.5, 1, 1.5, 2, 3 kg/m2. The field germination of Triticum aestivum L. wheat, the growth of its aboveground parts on the 14th day and 117th day of the experiment were determined, and also conducted bioassays on the chemotaxis of Paramecium caudatum Ehrenberg and bioluminescence of Escherichia coli Migula. On the 14th day of the experiment the germination of T. aestivum was reduced (by 56-77% compared to the control, r = -0.72). However, on the 117th day of the experiment, an increase in the number of shoots and their length compared to the control was shown, the maximum being for the variants of 0.5-1.5 kg/m2 of zoohumus (p<0.05). Bioassays made it possible to clarify the optimal doses of zoohumus application to the soil. Safe options for soil fertilization were additives of zoohumus from 0.5 to 1.0 kg/m2. Thus, the effectiveness of H. illucens zoohumus as an organic fertilizer was confirmed and it was proven for the first time that the soil does not change toxicological indicators when optimal dosages are observed.

Keywords

Main Subjects


Abdessan, R., Zhumanova, M., Luo, X., Jin-Jiang, Y., & Ji, H. (2024). Influence of direct supplementation of different levels of black soldier fly larvae (Hermetia illucens) frass to a recirculating aquaponic system: focusing on fish (Cyprinus carpio var. specularis), plant (Lactuca sativa var. ramosa Hort) and water quality. Aquaculture. doi: 10.1016/j.aquaculture.2024.741608
Alattar, M. A., Alattar, F. N., & Popa, R. (2016). Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays). Plant Science Today 3, 57–62. doi: 10.14719/pst.2016.3.1.179
Alexandratos, N. & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO.
Awasthi, M. K. (2020). Manure pretreatments with black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae): A study to reduce pathogen content. Science of the Total Environment, Vol. 737.
Bailly, A., & Weisskopf, L. (2012). The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal. Behav., 7 (1), pp. 79-85.
Beesigamukama, D., Mochoge, B., Korir, N.K., Fiaboe, K. M. K., Nakimbugwe, D., Khamis, F.M, Subramanian, S., Wangu, M.M., Dubois, T., Ekesi, S., & Tanga, C.M. (2020). Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly. Waste Manag., 119:183-194. doi: 10.1016/j.wasman.2020.09.043
Bernal, M.P., Alburquerque, J.A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol., 100, pp. 5444-5453. doi: 10.1016/j.biortech.2008.11.027
Bijay-Singh, Sapkota T. B. (2023). The effects of adequate and excessive application of mineral fertilizers on the soil, Editor(s): Michael J. Goss, Margaret Oliver, Encyclopedia of Soils in the Environment (Second Edition), Academic Press, Pages 369-381, doi.org/10.1016/B978-0-12-822974-3.00051-3
Bisht, N., & Singh Chauhan, P. (2021). Excessive and Disproportionate Use of Chemicals Cause Soil Contamination and Nutritional Stress. Intech Open. doi: 10.5772/intechopen.94593 
Boakye-Yiadom, K.A., Ilari, A., & Duca, D. (2022). Greenhouse Gas Emissions and Life Cycle Assessment on the Black Soldier Fly (Hermetia illucens L.). Sustainability, 14(16):10456. doi: 10.3390/su141610456
Carpanez, T.G., Moreira, V.R., Assis, I.R., & Amaral, M.C.S. (2022). Sugarcane vinasse as organo-mineral fertilizers feedstock: Opportunities and environmental risks. Science of The Total Environment, Vol. 832, 154998, ISSN 0048-9697. doi: 10.1016/j.scitotenv.2022.154998
Chiam, Z., Lee, J. T. E., Tan, J. K. N., Song, S., Arora, S., & Tong, Y. W. (2021). Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment. J. Environ. Manag. 286:112163. doi: 10.1016/j.jenvman.2021.112163
Diener, S., Studt Solano, N., & Roa Gutiérrez, F. (2011). Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorization, V.2, №.4, p. 357–363.
Du, J., Jia, T., Liu, J., & Chai, B. (2024). Relationships among protozoa, bacteria and fungi in polycyclic aromatic hydrocarbon-contaminated soils. Ecotoxicology and Environmental Safety, Volume 270, 115904. doi: 10.1016/j.ecoenv.2023.115904
Erofeeva, E. A. (2023). Environmental hormesis in living systems: The role of hormetic trade-offs. Science of The Total Environment, Vol. 901, 166022. doi: 10.1016/j.scitotenv.2023.166022
Fan, D., Wang, Sh., Guo, Y., Liu, J., Agathokleous, E., Zhu, Y., & Han, J. (2021). The role of bacterial communities in shaping Cd-induced hormesis in ‘living’ soil as a function of land-use change. Journal of Hazardous Materials, Volume 409, 124996. doi: 10.1016/j.jhazmat.2020.124996
FR 1.39.2015.19241. Methodology for determining the toxicity of soil and bottom sediment samples using an express method using a Biotester series device.
Fredrickson, B. L. (2000). Cultivating positive emotions to optimize health and well-being. Prevention & Treatment, 3, Article 0001a.
Fuhrmann, A., Wilde, B., Conz, R. F., Kantengwa, S., Konlambigue, M., Masengesho, B., Kintche, K., Kassa, K., Musazura, W., Späth, L., Gold, M., Mathys, A., Six, J., & Hartmann, M. (2022). Residues from black soldier fly (Hermetia illucens) larvae rearing influence the plant-associated soil microbiome in the short term. Frontiers in Microbiology, vol. 13. doi: 10.3389/fmicb.2022.994091.
Haden, V.R., Xiang, J., Peng, S., Bouman, B.A.M., Visperas, R., Ketterings, Q.M., Hobbs, P., & Duxbury, J.M. (2011). Relative effects of ammonia and nitrite on the germination and early growth of aerobic rice. J Plant Nutr Soil Sci. 174:292–300. doi: 10.1002/jpln.201000222
Hattori, S. (1995). State of research on radiation hormesis by CRIEPI. Am. Nucl. Soc. Trans., Vol. 73, P. 40–42.
Interstate standard №33830—2016 (IS). (2018). Organic fertilizers on basis of waste of stock-raising. Specifications. Interstate council for standardization, metrology and certification (ISC). 
Jumaniyazov, I., Juliev, M., Reimov, M., Orazbaev, A., Reymov, T., Bekanov, K. (2023). Marginal lands: a review of papers from the Scopus database published in English for the period of 1979–2022. Soil Science Annual., 74(2):169657. doi:10.37501/soilsa/169657.
Kapanadze, K., Magalashvili, A., & Imnadze, P. (2019). Distribution of natural radionuclides in the soils and assessment of radiation hazards in the Khrami Late Variscan crystal massif (Georgia). Heliyon, 5(3), e01377. doi: 10.1016/j.heliyon.2019.e01377
Klammsteiner, T., Turan, V., Juárez, M. F. D., Oberegger, S., & Insam, H. (2020). Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy, 10(10 October). doi:10.3390/agronomy10101578
Kuznetsova, T., Vecherskii, M., Khayrullin, D., Stepankov, A., Maximova, I., Kachalkin, A., & Ushakova, N. (2021). Dramatic Effect of the Black Soldier Fly Larvae on Fungal Community of a Compost. Journal of the Science of Food and Agriculture. 102. doi:10.1002/jsfa.11601
Lalander, C., Senecal, J., Gros Calvo, M., Ahrens, L., Josefsson, S., Wiberg, K., & Vinnerås, B. (2016). Fate of pharmaceuticals and pesticides in fly larvae composting. The Science of the total environment, 565, 279–286. doi:10.1016/j.scitotenv.2016.04.147
Lalander, C.H., Fidjeland, J., & Diener, S. (2015). High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron. Sustain. Dev., 35, 261–271. doi:10.1007/s13593-014-0235-4
Luo, Y., Liang, J., Zeng, G., Chen, M., Mo, D., Li, G., & Zhang, D. (2018). Seed germination test for toxicity evaluation of compost: its roles, problems and prospects. Waste Manag., 71, pp. 109-114.
Lyashchev, A., Koval, E., Proc, I., Valov, N., Tursumbekova, G., & Lyashcheva, L. (2022a). Recycling waste into biomass and effective reduction of Salmonella spp. using the black soldier fly (Hermetia illucens L.). International Research Journal, No. 12(126). doi:10.23670/IRJ.2022.126.123
Lyashchev, A., Proc, I., Koval, E., Valov, N., & Lyashcheva, L. (2022b). The processing of chicken excrements with black soldier fly (Hermetia illucens L.) larvae in the Northern Trans-Urals. International Research Journal, No. 11(125), doi:10.23670/IRJ.2022.125.118
McKenzie, F.C., & Williams, J. (2015). Sustainable food production: constraints, challenges and choices by 2050. Food Security 7, 221–233. doi:10.1007/s12571-015-0441-1
Meldau, D.G., Meldau, S., Hoang, L.H., Underberg, S., Wünsche. H., & Baldwin, I.T. (2013). Dimethyl disulfide produced by the naturally associated bacterium bacillus sрp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell. Jul;25(7):2731-47. doi:10.1105/tpc.113.114744
Meyers, S.L., Arana, J., Giraldo, L.C., Ingwell, L., Rodríguez, L., & Vargas, N. (2024). Effect of Black Soldier Fly Larvae and Food Substrates on Weed Seed Emergence. HortTechnology, 34(2), 190-197. doi: 10.21273/HORTTECH05273-23
Nitbani, F., Tjitda, P., Nitti, F., Jumina, J., & Detha, A. (2022). Antimicrobial Properties of Lauric Acid and Monolaurin in Virgin Coconut Oil: A Review. ChemBioEng Reviews. 9. doi: 10.1002/cben.202100050.
Park, Y., Swarnalee, D., Mina, A., Jos, M. R., & Kyungseok, P. (2015). Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds, Biochemical and Biophysical Research Communications, Volume 461, Issue 2, Pages 361-365, doi: 10.1016/j.bbrc.2015.04.039
Parodi, A., De Boer, I.J.M., Gerrits, W.J.J., Van Loon, J.J.A., Heetkamp, M.J.W., Van Schelt, J., Bolhuis, J.E., & Van Zanten, H.H.E. (2020). Bioconversion efficiencies, greenhouse gas and ammonia emissions during black soldier fly rearing – A mass balance approach. J Clean Prod. 271:122488.  doi: 10.1016/j.jclepro.2020.122488
Pendyurin, E.A., Rybina, S.Yu., & Smolenskaya, L.M. (2020). Using the zoo compost of the Black Lioness as an organic fertilizer. Agrarian science., (7-8):106-110. (In Russ.) doi: 10.32634/0869-8155-2020-340-7-106-110
Pendyurin, Е.А., Sapronova, Zh.A., Tokach, & Yu.E. (2023). Zoocompost of black lion fly larvae as a moisture-retaining agent in soils // Prirodoobustrojstvo. № 3. P. 59-65. doi: 10.26897/1997‑6011‑2023‑3-59-65
PNDF T 14.1:2:3:4.11-04. Methodology for determining the integral toxicity of surface water, including sea water, ground water, drinking water, waste water, aqueous extracts of soils, waste, sewage sludge based on changes in bacterial bioluminescence using the Ecolum-test system
Porras-Alfaro, A. (2024). Soil Processes, Diversity, and Ecosystem Services. In Book: Encyclopedia of Biodiversity (Third Edition). Editor(s): Samuel M. Scheiner. Academic Press, doi: 10.1016/B978-0-12-822562-2.00065-7
Prishchepa, I.A. (2000). The influence of mineral fertilizers on the efficiency of pesticides and retardants applied to crops of cereal crops. Plant Protection Bulletin. №1. (in Russian).
Pushkareva, E. A., Koval, E. V., Lyashchev, A. A., & Valov, N.A. (2023). Study of phytotoxicity of aqueous extracts of zoohumus Hermetia illucens L. on the viability and development of wheat / Bulletin of the Orenburg State Agrarian University. No. 4 (102). P. 26-33.
Rani, A., Rana, A., Dhaka, R. K., Singh, A. P., Chahar, M., Surender, S., Lata, N., Krishna, P. S., & Dror, M. (2023). Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. Biotechnology Advances, Vol. 63, 108078. doi: 10.1016/j.biotechadv.2022.108078 
Ravi, H.K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F., & Vian, M.A. (2020). Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes. 8(7):857. doi: 10.3390/pr8070857
Rosmiati, M., Nurjanah, K. A., Suantika, G., & Putra, R. E. (2017). Application of compost produced by bioconversion of coffee husk by black soldier fly larvae (Hermetia illucens) as solid fertilizer to lettuce (Lactuca Sativa Var. Crispa): impact to growth. In Proceedings of the International Conference on Green Technology. Vol. 8, No. 1, pp. 38-44.
Santolin, J., Vlaeminck, S. E., Appiah-Twum, H., Van Winckel, T., & Spiller, M. (2024). Consequential LCA of NPK fertilizers from microbial, animal, plant, and mineral origin highlights resource constraints and environmental impacts. Journal of Cleaner Production. Volume 457, 142312. doi: 10.1016/j.jclepro.2024.142312
Shahid, S.A., Zaman, M., & Heng, L. (2018). Soil Salinity: Historical Perspectives and a World Overview of the Problem. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham. doi: 10.1007/978-3-319-96190-3_2
Sheppard, D.C., Tomberlin, J.K., Joyce, J.A., Kiser, B.C., & Sumner, S.M. (2002). Rearing methods for the Black Soldier Fly (Diptera: Stratiomyidae). J Med Entomol., 39, р. 695-698. doi: 10.1603/0022-2585-39.4.695
Strukova, D. V., & Malyukova, L. S. (2009). Activity of catalase and phosphatase enzymes in brown forest soils of a tea plantation in the subtropics of Russia. Subtropical and southern horticulture of Russia., № 42–2. р. 118–127 (in Russian).
Sverguzova, S.V., Bomba, I. & Pendyurin, E. (2021). Sorption Extraction of Zn2+ Ions from Aqueous Environment with Zoo Compost of Black Soldier Fly. doi: 10.1007/978-3-030-68984-1_49
United Nations Development Programme. (2016). One United Nations Plaza. New York, NY 10017.
United Nations. (2019). The sustainable development goals report 2019. United Nations publication issued by the Department of Economic and Social Affairs 64.
Wood, S., Sebastian, K.L., & Scherr, S.J., (2000). Pilot analysis of global ecosystems: agroecosystems. World Resources Institute, Washington, D.C.
Yang, T., Lupwayi, N., Marc, St-A., Siddique, K. H.M., & Bainard, L. D. (2021). Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Global Ecology and Conservation, Volume 27, e01521. doi: 10.1016/j.gecco.2021.e01521
Zhao, H., Zhou, Y., Lu, Z., Ren, X., Barcelo, D., Zhang, Z., & Wang, Q. (2023). Microplastic pollution in organic farming development cannot be ignored in China: Perspective of commercial organic fertilizer // Journal of Hazardous Materials, Volume 460, 132478. doi: 10.1016/j.jhazmat.2023.132478