Agbehadji, I. E., & Obagbuwa, I. C. (2024). Systematic Review of Machine Learning and Deep Learning Techniques for Spatiotemporal Air Quality Prediction. Atmosphere, 15(11), 1352. https://doi.org/https://doi.org/10.3390/atmos15111352
Araveeporn, A. (2022). Comparing the linear and quadratic discriminant analysis of diabetes disease classification based on data multicollinearity. International Journal of Mathematics and Mathematical Sciences, 2022(1), 1-12. https://doi.org/https://doi.org/10.1155/2022/7829795
Arifuzzaman, M., Hasan, M. R., Toma, T. J., Hassan, S. B., & Paul, A. K. (2023). An advanced decision tree-based deep neural network in nonlinear data classification. Technologies, 11(1), 1-24. https://doi.org/https://doi.org/10.3390/technologies11010024
Awad, M., & Fraihat, S. (2023). Recursive feature elimination with cross-validation with decision tree: Feature selection method for machine learning-based intrusion detection systems. Journal of Sensor and Actuator Networks, 12(5), 67. https://doi.org/https://doi.org/10.3390/jsan12050067
Beaulac, C., & Rosenthal, J. S. (2020). BEST: A decision tree algorithm that handles missing values. Computational Statistics, 35(3), 1001-1026. https://doi.org/https://doi.org/10.1007/s00180-020-00987-z
Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967. https://doi.org/https://doi.org/10.1007/s10462-020-09896-5
Bhanja, S., & Das, A. (2021). A hybrid deep learning model for air quality time series prediction. Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1611-1618. https://doi.org/https://doi.org/10.11591/ijeecs.v22.i3.pp1611-1618
Bhardwaj, D., & Ragiri, P. R. (2024). A Deep Learning Approach to Enhance Air Quality Prediction: Comparative Analysis of LSTM, LSTM with Attention Mechanism and BiLSTM. 2024 IEEE Region 10 Symposium (TENSYMP),
Can, R., Kocaman, S., & Gokceoglu, C. (2021). A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey. Applied Sciences, 11(11), 4993. https://doi.org/https://doi.org/10.3390/app11114993
Chang, Y.-S., Abimannan, S., Chiao, H.-T., Lin, C.-Y., & Huang, Y.-P. (2020). An ensemble learning based hybrid model and framework for air pollution forecasting. Environmental Science and Pollution Research, 27, 38155-38168. https://doi.org/https://doi.org/10.1007/s11356-020-09855-1
Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of applied science and technology trends, 2(01), 20-28. https://doi.org/https://doi.org/10.38094/jastt20165
Chaturvedi, P. (2024). Air Quality Prediction System Using Machine Learning Models. Water, Air, & Soil Pollution, 235(9), 578. https://doi.org/https://doi.org/10.1007/s11270-024-07390-0
Chowdhury, A. A., Das, A., Hoque, K. K. S., & Karmaker, D. (2022). A comparative study of hyperparameter optimization techniques for deep learning. Proceedings of International Joint Conference on Advances in Computational Intelligence: IJCACI 2021,
Dey, R., & Mathur, R. (2023). Ensemble learning method using stacking with base learner, a comparison. International Conference on Data Analytics and Insights,
Ding, Y., Zhu, H., Chen, R., & Li, R. (2022). An efficient AdaBoost algorithm with the multiple thresholds classification. Applied Sciences, 12(12), 5872. https://doi.org/https://doi.org/10.3390/app12125872
Djeziri, M. A., Djedidi, O., Morati, N., Seguin, J.-L., Bendahan, M., & Contaret, T. (2022). A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture. Applied Intelligence, 52(6), 6065-6078. https://doi.org/https://doi.org/10.1007/s10489-021-02761-0
Dong, Y., Li, F., Zhu, T., & Yan, R. (2024). Air quality prediction based on quantum activation function optimized hybrid quantum classical neural network. Frontiers in Physics, 12, 1412664. https://doi.org/https://doi.org/10.3389/fphy.2024.1412664
Du, S., Li, T., Yang, Y., & Horng, S.-J. (2019). Deep air quality forecasting using hybrid deep learning framework. IEEE Transactions on Knowledge and Data Engineering, 33(6), 2412-2424. https://doi.org/https://doi.org/10.1109/tkde.2019.2954510
Emeç, M., & Yurtsever, M. (2025). A novel ensemble machine learning method for accurate air quality prediction. International Journal of Environmental Science and Technology, 22(1), 459-476. https://doi.org/https://doi.org/10.1007/s13762-024-05671-z
Fathima, M. D., Donavalli, S., & Kambham, H. (2024). Air Quality Prediction using Deep Learning models. 2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI),
Ghosh, S., Gourisaria, M. K., Sahoo, B., & Das, H. (2023). A pragmatic ensemble learning approach for rainfall prediction. Discover Internet of Things, 3(1), 13. https://doi.org/https://doi.org/10.1007/s43926-023-00044-3
Gilik, A., Ogrenci, A. S., & Ozmen, A. (2022). Air quality prediction using CNN+ LSTM-based hybrid deep learning architecture. Environmental Science and Pollution Research(29), 1-19. https://doi.org/https://doi.org/10.1007/s11356-021-16227-w
Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of big data, 7(1), 94. https://doi.org/https://doi.org/10.1186/s40537-020-00369-8
Hastie, T. (2020). Ridge regularization: An essential concept in data science. Technometrics, 62(4), 426-433. https://doi.org/https://doi.org/10.1080/00401706.2020.1791959
Hettige, K. H., Ji, J., Xiang, S., Long, C., Cong, G., & Wang, J. (2024). Airphynet: Harnessing physics-guided neural networks for air quality prediction. arXiv preprint arXiv:2402.03784, 2, 1-16. https://doi.org/https://doi.org/10.48550/arxiv.2402.03784
Hosein, P., & Baboolal, K. (2024). Bayes Classification using an approximation to the Joint Probability Distribution of the Attributes. International Conference on Deep Learning Theory and Applications,
Hu, Y., Li, Q., Shi, X., Yan, J., & Chen, Y. (2023). Multi-spatial Multi-temporal Air Quality Forecasting with Integrated Monitoring and Reanalysis Data. arXiv preprint arXiv:2401.00521, 1. https://doi.org/https://doi.org/10.48550/arxiv.2401.00521
Jafarnejad Chaghoshi, A., Rezasoltani, A., & Khani, A. M. (2024). Unleashing the Power of Ensemble Learning: Predicting National Ranks in Iran’s University Entrance Examination. Industrial Management Journal, 16(3), 457-481. https://doi.org/https://doi.org/10.22059/imj.2024.381521.1008178
Jayaraman, S., & Abirami, S. (2025). Enhancing urban air quality prediction using time-based-spatial forecasting framework. Scientific Reports, 15(1), 4139. https://doi.org/https://doi.org/10.1038/s41598-024-83248-z
Kebriaeezadeh, S., Ghodduosi, J., Alesheikh, A. A., Arjmandi, R., & Mirzahosseini, S. A. (2022). Analyzing trend and factors affecting air quality in urban areas: a case study in Isfahan-metropolis, Iran. Environmental Sciences, 20(2), 171-184.
Khamlich, M., Stabile, G., Rozza, G., Környei, L., & Horváth, Z. (2023). A physics-based reduced order model for urban air pollution prediction. Computer Methods in Applied Mechanics and Engineering, 417, 116416. https://doi.org/https://doi.org/10.48550/arxiv.2305.04575
Kim, H. I., Kim, D., Mahdian, M., Salamattalab, M. M., Bateni, S. M., & Noori, R. (2024). Incorporation of water quality index models with machine learning-based techniques for real-time assessment of aquatic ecosystems. Environmental Pollution, 355, 124242. https://doi.org/https://doi.org/10.1016/j.envpol.2024.124242
Kim, H. I., Kim, D., Salamattalab, M. M., Mahdian, M., Bateni, S. M., & Noori, R. (2024). Machine learning-based modeling of surface water temperature dynamics in arctic lakes. Environmental Science and Pollution Research, 31(49), 59642-59655. https://doi.org/https://doi.org/10.1007/s11356-024-35173-x
Kramer, O. (2013). Dimensionality reduction with unsupervised nearest neighbors (Vol. 51). Springer. https://doi.org/https://doi.org/10.1007/978-3-642-38652-7_2
Li, F., & Dong, Y. (2024). Air quality prediction based on improved quantum long short-term memory neural networks. Physica Scripta, 99(8), 085035. https://doi.org/https://doi.org/10.1088/1402-4896/ad619a
Li, Y., Jiang, T., Gu, H., Lu, W., Wu, Q., & Yu, Y. (2023). Air Quality Index Prediction Based on CNN-LSTM-Attention Hybrid Modeling. 2023 International Conference on the Cognitive Computing and Complex Data (ICCD),
Liu, H., Cheng, J., & Liao, W. (2024). Deep neural networks are adaptive to function regularity and data distribution in approximation and estimation. arXiv preprint arXiv:2406.05320, 1. https://doi.org/https://doi.org/10.48550/arxiv.2406.05320
Ma, X., Chen, T., Ge, R., Xv, F., Cui, C., & Li, J. (2023). Prediction of PM2. 5 concentration using spatiotemporal data with machine learning models. Atmosphere, 14(10), 1517. https://doi.org/https://doi.org/10.3390/atmos14101517
Mao, Q., Zhu, X., Zhang, X., & Kong, Y. (2024). Effect of air pollution on the global burden of cardiovascular diseases and forecasting future trends of the related metrics: a systematic analysis from the Global Burden of Disease Study 2021. Frontiers in Medicine, 11, 1472996. https://doi.org/https://doi.org/10.3389/fmed.2024.1472996
Mateen., M. (2024). Air Quality and Pollution Assessment [Data set] (https://doi.org/https://doi.org/10.34740/KAGGLE/DS/6197184
Mengara Mengara, A. G., Park, E., Jang, J., & Yoo, Y. (2022). Attention-based distributed deep learning model for air quality forecasting. Sustainability, 14(6), 3269. https://doi.org/https://doi.org/10.3390/su14063269
Mirzadeh, H., & Omranpour, H. (2024). Extended Random Forest for multivariate air quality forecasting. International Journal of Machine Learning and Cybernetics, 16, 1-25. https://doi.org/https://doi.org/10.1007/s13042-024-02329-7
Mitchell, R., & Frank, E. (2017). Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science, 3, e127. https://doi.org/https://doi.org/10.7717/peerj-cs.127
Natarajan, S. K., Shanmurthy, P., Arockiam, D., Balusamy, B., & Selvarajan, S. (2024). Optimized machine learning model for air quality index prediction in major cities in India. Scientific Reports, 14(1), 6795. https://doi.org/https://doi.org/10.1038/s41598-024-54807-1
Nguyen, A. T., Pham, D. H., Oo, B. L., Ahn, Y., & Lim, B. T. (2024). Predicting air quality index using attention hybrid deep learning and quantum-inspired particle swarm optimization. Journal of big data, 11(1), 71. https://doi.org/https://doi.org/10.1186/s40537-024-00926-5
Noori, R., Hoshyaripour, G., Ashrafi, K., & Araabi, B. N. (2010). Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44(4), 476-482. https://doi.org/https://doi.org/10.1016/j.atmosenv.2009.11.005
Nukui, T., & Onogi, A. (2023). An R package for ensemble learning stacking. Bioinformatics Advances, 3(1), vbad139. https://doi.org/https://doi.org/10.1093/bioadv/vbad139
Pal, A. (2021). Logistic regression: A simple primer. Cancer Research, Statistics, and Treatment, 4(3), 551-554. https://doi.org/https://doi.org/10.4103/crst.crst_164_21
Petrić, V., Hussain, H., Časni, K., Vuckovic, M., Schopper, A., Andrijić, Ž. U., Kecorius, S., Madueno, L., Kern, R., & Lovrić, M. (2024). Ensemble Machine Learning, Deep Learning, and Time Series Forecasting: Improving Prediction Accuracy for Hourly Concentrations of Ambient Air Pollutants. Aerosol and Air Quality Research, 24(12), 230317. https://doi.org/https://doi.org/10.4209/aaqr.230317
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31, 1-11. https://doi.org/https://doi.org/10.48550/arxiv.1706.09516
Qiuqian, W., GaoMin, KeZhu, Z., & Chenchen. (2025). A light gradient boosting machine learning-based approach for predicting clinical data breast cancer. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(1), 75. https://doi.org/https://doi.org/10.1007/s41939-024-00662-6
Quynh, T. P. T., Viet, T. N., Thi, H. D., & Manh, K. H. (2023). Enhancing air quality prediction accuracy using hybrid deep learning. Int J Environ Sci Dev, 14(2), 155-159. https://doi.org/https://doi.org/10.18178/ijesd.2023.14.2.1428
Rahman, M. M., Nayeem, M. E. H., Ahmed, M. S., Tanha, K. A., Sakib, M. S. A., Uddin, K. M. M., & Babu, H. M. H. (2024). AirNet: predictive machine learning model for air quality forecasting using web interface. Environmental Systems Research, 13(1), 44. https://doi.org/https://doi.org/10.1186/s40068-024-00378-z
Rajagopal, K., & Narayanan, K. (2024). A Novel Approach for Air Quality Index Prognostication using Hybrid Optimization Techniques. International Research Journal of Multidisciplinary Technovation, 6(2), 84-99. https://doi.org/https://doi.org/10.54392/irjmt2427
Ramadan, M. S., Abuelgasim, A., & Al Hosani, N. (2024). Advancing air quality forecasting in Abu Dhabi, UAE using time series models. Frontiers in Environmental Science, 12, 1393878. https://doi.org/https://doi.org/10.3389/fenvs.2024.1393878
Roy, S., Mehera, R., Pal, R. K., & Bandyopadhyay, S. K. (2023). Hyperparameter optimization for deep neural network models: a comprehensive study on methods and techniques. Innovations in Systems and Software Engineering, 1-12. https://doi.org/https://doi.org/10.1007/s11334-023-00540-3
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence, 1(5), 206-215. https://doi.org/https://doi.org/10.48550/arxiv.1811.10154
Saravani, M. J., Noori, R., Jun, C., Kim, D., Bateni, S. M., Kianmehr, P., & Woolway, R. I. (2025). Predicting chlorophyll-a concentrations in the world’s largest lakes using Kolmogorov-Arnold networks. Environmental Science & Technology, 59(3), 1801-1810. https://doi.org/https://doi.org/10.1021/acs.est.4c11113
Scornet, E. (2023). Trees, forests, and impurity-based variable importance in regression. Annales de l’Institut Henri Poincare (B) Probabilites et statistiques,
Shankar, L., & Arasu, K. (2023). Deep Learning Techniques for Air Quality Prediction: A Focus on PM2. 5 and Periodicity. Migration Letters, 20(S13), 468-484. https://doi.org/https://doi.org/10.59670/ml.v20is13.6477
Sharifi, M. S., Aslami, A., Zaheb, H., Abed, I., Shokoori, A. W., & Yona, A. (2024). Modeling the Impact of Socio-Economic and Environmental Factors on Air Quality in the City of Kabul. Sustainability, 16(24), 10969. https://doi.org/https://doi.org/10.3390/su162410969
Sigamani, S. (2024). Air quality index prediction with optimisation enabled deep learning model in IoT application. Environmental Technology, 46(11), 1892–1908. https://doi.org/https://doi.org/10.1080/09593330.2024.2409993
Sun, Q., Zhu, Y., Chen, X., Xu, A., & Peng, X. (2021). A hybrid deep learning model with multi-source data for PM 2.5 concentration forecast. Air Quality, Atmosphere & Health, 14, 503-513. https://doi.org/https://doi.org/10.1007/s11869-020-00954-z
Tang, S. (2024). The box office prediction model based on the optimized XGBoost algorithm in the context of film marketing and distribution. Plos one, 19(10), e0309227. https://doi.org/https://doi.org/10.1371/journal.pone.0309227
Tejaswi, M. (2024). AIR MAP- Deep Learning Prediction in Air Quality for Smarter Decisions. Interantional Journal of Scientific Research in Engineering and Management, 08(05), 1-5. https://doi.org/https://doi.org/10.55041/ijsrem35317
Tsokov, S., Lazarova, M., & Aleksieva-Petrova, A. (2022). A hybrid spatiotemporal deep model based on CNN and LSTM for air pollution prediction. Sustainability, 14(9), 5104. https://doi.org/https://doi.org/10.3390/su14095104
Victoria, A. H., & Maragatham, G. (2021). Automatic tuning of hyperparameters using Bayesian optimization. Evolving Systems, 12(1), 217-223. https://doi.org/https://doi.org/10.1007/s12530-020-09345-2
Wang, T. (2024). Air Quality Prediction based on Neural Network. Highlights in Science, Engineering and Technology, 105, 37-43. https://doi.org/https://doi.org/10.54097/2fsfav47
Wang, X., Zhang, S., Chen, Y., He, L., Ren, Y., Zhang, Z., Li, J., & Zhang, S. (2024). Air quality forecasting using a spatiotemporal hybrid deep learning model based on VMD–GAT–BiLSTM. Scientific Reports, 14(1), 17841. https://doi.org/https://doi.org/10.54097/2fsfav47
Wang, Y., Liu, K., He, Y., Wang, P., Chen, Y., Xue, H., Huang, C., & Li, L. (2024). Enhancing air quality forecasting: a novel spatio-temporal model integrating graph convolution and multi-head attention mechanism. Atmosphere, 15(4), 418. https://doi.org/https://doi.org/10.1038/s41598-024-68874-x
Wardana, I. N. K., Gardner, J. W., & Fahmy, S. A. (2021). Optimising deep learning at the edge for accurate hourly air quality prediction. Sensors, 21(4), 1064. https://doi.org/https://doi.org/10.3390/s21041064
Wonderling, D., Mariani, A., Samarasekera, E. J., Wilkinson, C., Patel, R. S., & Mills, J. (2024). Secondary prevention of cardiovascular disease, including cholesterol targets: summary of updated NICE guidance. bmj, 384, 1-4. https://doi.org/https://doi.org/10.1136/bmj.q637
Xu, R., Wang, D., Li, J., Wan, H., Shen, S., & Guo, X. (2023). A hybrid deep learning model for air quality prediction based on the time–frequency domain relationship. Atmosphere, 14(2), 405. https://doi.org/https://doi.org/10.3390/atmos14020405
Zhang, Z., Zeng, Y., & Yan, K. (2021). A hybrid deep learning technology for PM 2.5 air quality forecasting. Environmental Science and Pollution Research, 28, 39409-39422. https://doi.org/https://doi.org/10.1007/s11356-021-12657-8
Zhao, M. (2025). Synthetic minority oversampling technique based on natural neighborhood graph with subgraph cores for class-imbalanced classification. The Journal of Supercomputing, 81(1), 1-35. https://doi.org/https://doi.org/10.1007/s11227-024-06655-z
Zhao, M., & Ye, N. (2024). High-Dimensional Ensemble Learning Classification: An Ensemble Learning Classification Algorithm Based on High-Dimensional Feature Space Reconstruction. Applied Sciences, 14(5), 1956. https://doi.org/https://doi.org/10.3390/app14051956
Zhao, S., Zhang, B., Yang, J., Zhou, J., & Xu, Y. (2024). Linear discriminant analysis. Nature Reviews Methods Primers, 4(1), 70. https://doi.org/https://doi.org/10.1038/s43586-024-00346-y