Monitoring Lead Contamination by Integrating Environmental Indices and Random Forest-Based Digital Soil Mapping in Shiraz Urban Watershed, Iran

Document Type : Original Research Paper

Authors

1 Department of Soil Science, Ferdowsi University of Mashhad, P.O. Box 9177948978, Mashhad, Iran

2 Department of Soil Sciences, Shiraz University, P.O. Box 71441-13131 Shiraz, Iran

3 Head of Research & Extension Office, Landscape & Green Spaces Organization of Shiraz Municipality, P.O. Box 45366-78 Shiraz, Iran

4 Department of Remote Sensing & GIS, University of Tehran, P.O. Box 14155-6465, Tehran, Iran

5 Department of Agriculture, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran

10.22059/poll.2025.394624.2911

Abstract

The rapid increase in population and economic expansion has resulted in the infiltration of environmental pollutants, particularly heavy metals, into the soil, presenting a substantial threat to public well-being and reliability of food security. Consequently, awareness and evaluation of these elements are key to assessing soil quality and related risks. In this study, machine learning modeling (random forest model) and digital mapping were employed to quantify and model lead (Pb) contamination using various environmental indices in a section of the urban watershed of Shiraz. For this purpose, 148 soil samples were systematically gathered from a depth of 0 to 20 cm utilizing a randomized sampling approach. After sample preparation, the total Pb content in the soil was determined applying standard analytical methods. Pb contamination risk assessment was conducted using three environmental indices: Geo-Accumulation Index (Igeo), Enrichment Factor (EF), and Contamination Factor (Cƒ). The results indicated that all analyzed samples exhibited total Pb concentrations (mean: 7.78 mg/kg) below the recommended standard levels for Iran. Based on the Igeo (range: 1.54–4.72), the samples were categorized as moderately to severely contaminated. The EF (range: 4.35–39.65) classified the samples as moderately, highly, and extremely enriched, while the Cƒ (range: 3.37–29.63) placed the samples in the high to very high contamination category. The interpretation of environmental indices confirmed low to moderate levels of Pb contamination, primarily influenced by anthropogenic activities. Therefore, to ensure sustainable food security, continuous monitoring of Pb concentration variations in the studied soils is essential.

Keywords

Main Subjects


Abbasi, S., Rezaei, M., Keshavarzi, B., Mina, M., Ritsema, C., & Geissen, V. (2021). Investigation of the 2018 Shiraz dust event: Potential sources of metals, rare earth elements, and radionuclides; health assessment. Chemosphere., 279, 130533. https://doi.org/10.1016/j.chemosphere.2021.130533
Adnan, M., Xiao, B., Xiao, P., Zhao, P., Li, R., & Bibi, S. (2022). Research progress on heavy metals pollution in the soil of smelting sites in China. Toxics., 10(5), 231. https://doi.org/10.3390/toxics10050231
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem., 2019(1), 6730305. https://doi.org/10.1155/2019/6730305
Amiri, H., Daneshvar, E., Azadi, S., & Azadi, S. (2022). Contamination level and risk assessment of heavy metals in the topsoil around cement factory: A case study. Environ. Eng. Res., 27(5). https://doi.org/10.4491/eer.2021.313
Bali, A. S., & Sidhu, G. P. S. (2021). Heavy metal contamination indices and ecological risk assessment index to assess metal pollution status in different soils. In Heavy metals in the environment. Elsevier., (pp. 87-98). https://doi.org/10.1016/B978-0-12-821656-9.00005-5
Boettinger, J.L., Ramsey, R.D., Bodily, J.M., Cole, N.J., Kienast-Brown, S., Nield, S.J., Saunders, A.M. and Stum, A.K. (2008). Landsat spectral data for digital soil mapping. In Digital soil mapping with limited data (pp 193–202). Springer, Dordrecht. https://doi.org/10.1007/978-1- 4020- 8592-5_16
Boukaka, K., & Mayache, B. (2020). Phytoremediation of soil contaminated by heavy metals within a technical landfill center vicinity: Algerian case study. Pollut., 6(4), 811-826. https://doi.org/10.22059/poll.2020.301691.792
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Cai, L. M., Wang, Q. S., Wen, H. H., Luo, J., & Wang, S. (2019). Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and environmental safety, 168, 184-191. https://doi.org/10.1016/j.ecoenv.2018.10.092
Chen, G., Yang, Y., Liu, X., & Wang, M. (2021). Spatial distribution characteristics of heavy metals in surface soil of Xilinguole coal mining area based on semivariogram. ISPRS Int. J. Geo-Inf., 10(5), 290. https://doi.org/10.3390/ijgi10050290
Dharumarajan, S., Lalitha, M., Niranjana, K. V., & Hegde, R. (2022). Evaluation of digital soil mapping approach for predicting soil fertility parameters—a case study from Karnataka Plateau, India. Arabian J. Geosci., 15(5), 386. https://doi.org/10.1007/s12517-022-09629-8
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., ... & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography., 36(1), 27-46. https://doi.org/10.1111/j.1600- 0587.2012.07348.x
Fasihi, H., & Hamidi, M. (2020). Investigating the Spread of Soils Pollution and Pollution Sources Originating from Tehran in Rural Districts of Qal’ehno and Kahrizak (Rey Township, Tehran, Iran).
Fazeli, G., Karbassi, A., Khoramnejadian, S., & Nasrabadi, T. (2019). Evaluation of urban soil pollution: a combined approach of toxic metals and polycyclic aromatic hydrocarbons (PAHs). Int. J. Environ. Res., 13, 801-811. https://doi.org/10.1007/s41742-019-00206-8 
Ferreira, C. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ., 805, 150106. https://doi.org/10.1016/j.scitotenv.2021.150106
Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res., 39(12). https://doi.org/10.1029/2002WR001426
Gilabert, M. A., González-Piqueras, J., Garcıa-Haro, F. J., & Meliá, J. (2002). A generalized soil-adjusted vegetation index. Remote Sens. Environ., 82(2-3), 303-310. https://doi.org/10.1016/S0034-4257(02)00048-2
Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ., 80(1), 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9
Golia, E. E., Tsiropoulos, N. G., Dimirkou, A., & Mitsios, I. (2007). Distribution of heavy metals of agricultural soils of central Greece using the modified BCR sequential extraction method. Int. J. Environ. Anal. Chem., 87(13-14), 1053-1063. https://doi.org/10.1080/03067310701451012
Hammam, A. A., Mohamed, W. S., Sayed, S. E. E., Kucher, D. E., & Mohamed, E. S. (2022). Assessment of soil contamination using gis and multi-variate analysis: A case study in El-Minia Governorate, Egypt. Agronomy., 12(5), 1197. https://doi.org/10.3390/agronomy12051197
Hamzenejhad, R. (2020). Quantitative assessment of soil heavy metals pollution. Appl. Soil Ecol., 8(2), 37-52.
Huang, H., Zhou, Y., Liu, Y., Li, K., Xiao, L., Li, M., ... & Wu, F. (2020). Assessment of anthropogenic sources of potentially toxic elements in soil from arable land using multivariate statistical analysis and random forest analysis. Sustainability., 12(20), 8538. https://doi.org/10.3390/su12208538
Karbassi, A., Nasrabadi, T., Rezai, M., & Modabberi, S. (2014). Pollution with metals (As, Sb, Hg, Zn) in agricultural soil located close to Zarshuran gold mine, Iran. EEMJ., 13(1). https://doi.org/10.30638/eemj.2014.014
Karimi, A., Haghnia, G. H., Ayoubi, S., & Safari, T. (2017). Impacts of geology and land use on magnetic susceptibility and selected heavy metals in surface soils of Mashhad plain, northeastern Iran. J. Appl. Geophys., 138, 127-134. https://doi.org/10.1016/J.JAPPGEO.2017.01.022
      Khaledian, Y., & Miller, B. A. (2020). Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Modell., 81, 401-418. https://doi.org/10.1016/j.apm.2019.12.016 
Khosravi, M., Zolfaghari, A., Kaboli, S. H., & Ghafari, H. (2022). Application of digital soil mapping in soil particle size zonation and estimation of saturated soil hydraulic conductivity for optimal management of watersheds (case study: Damghanrood Watershed). Iran. J. Soil Water Res., 53(2), 245-261. https://doi.org/10.22059/IJSWR.2022.333013.669113
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCIA., 14(2), 1137-1145.
Li, X., Ding, J., Liu, J., Ge, X., & Zhang, J. (2021). Digital mapping of soil organic carbon using sentinel series data: a case study of the Ebinur lake watershed in Xinjiang. Remote Sens., 13(4), 769. https://doi.org/10.3390/rs13040769
Lin, I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biom., 45, 255-268.
Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma., 154(1-2), 138-152. https://doi.org/10.1016/j.geoderma.2009.10.007
McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma., 117(1-2), 3-52. https://doi.org/10.1016/S0016-7061(03)00223-4
McDaniel, K. C., & Haas, R. H. (1982). Assessing mesquite-grass vegetation condition from Landsat. Photogramm. Eng. Remote Sens., 48(3), 441-450.
Metternicht, G. I., & Zinck, J. A. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sens. Environ., 85(1), 1-20. https://doi.org/10.1016/S0034-4257(02)00188-8
Minasny, B., & McBratney, A. B. (2016). Digital soil mapping: A brief history and some lessons. Geoderma., 264, 301-311. https://doi.org/10.1016/j.geoderma.2015.07.017
Mohammadi, A., Hajizadeh, Y., Taghipour, H., Mosleh Arani, A., Mokhtari, M., & Fallahzadeh, H. (2018). Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A preliminary ecological risk assessment and source identification. Hum. Ecol. Risk Assess.: Int. J., 24(8), 2070-2087. https://doi.org/10.1080/10807039.2018.1438173
Mousavi, A., Shahbazi, F., Oustan, S., Jafarzadeh, A. A., & Minasny, B. (2020). Spatial distribution of iron forms and features in the dried lake bed of Urmia Lake of Iran. Geodermal Reg., 21, e00275. https://doi.org/10.1016/j.geodrs.2020.e00275
Mousavi, S. M., Brodie, G., Payghamzadeh, K., Raiesi, T., & Strivastava, A. K. (2022). Lead bioavailability in the environment: its exposure and and effects. JAEHR., 10(1), 1-14. https://doi.org/10.32598/JAEHR.10.1.1256
Nguyen Thanh, H., Nguyen Thi Ngoc, H., & Mai Huong, T. (2023). Effective combination of Lysinibacillus sphaericus and phytoremediation in soil contaminated with chromium. Pollut., 9(1), 15-22. https://doi.org/10.22059/poll.2022.335374.1287
Osuntoki, A., Olukanni, O., Nwakile, O., & Kabiru, A. (2022). Oxidative Stress Induction in Cassava Plant (Manihot Esculenta Crantz) Grown on Soil Contaminated with Diesel. Pollut., 8(2), 671-679. https://doi.org/10.22059/poll.2022.331299.1197
Padarian, J., Minasny, B., & McBratney, A. B. (2020). Machine learning and soil sciences: A review aided by machine learning tools. Soil, 6(1), 35-52. https://doi.org/10.5194/soil-6-35-2020
Parks, S. A., Dillon, G. K., & Miller, C. (2014). A new metric for quantifying burn severity: the relativized burn ratio. Remote Sens., 6(3), 1827-1844. https://doi.org/10.3390/rs6031827
Pendias, A. K. (2011). Trace elements in soils and plants. (p. 548) (Verenigde Staten: CRC press). https://doi.org/10.1201/b10158
Peng, Y., Kheir, R. B., Adhikari, K., Malinowski, R., Greve, M. B., Knadel, M., & Greve, M. H. (2016). Digital mapping of toxic metals in Qatari soils using remote sensing and ancillary data. Remote Sens., 8(12), 1003. https://doi.org/10.3390/rs8121003
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sens. Environ., 48(2), 119-126. https://doi.org/10.1016/0034-4257(94)90134-1
R Development Core Team. (2015). R: a language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna, Austria. 
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1974, December). Monitoring vegetation systems in the Great Plains with ERTS. (Paper presented at the Third Earth Resources Technology Satellite Symposium, Greenbelt, NASA SP-351, Vol. 30103017, p. 317)
Sahraei, N., Landi, A., Hojati, S., & Pasolli, E. (2023). Assessment of pollution in the central soils of Khuzestan province with potentially toxic elements (PTEs) and their origins. Water and Soil., 37(3), 457-471. https://doi.org/10.22067/jsw.2023.81161.1254
Seshan, B. R. R., Natesan, U., & Deepthi, K. (2010). Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. IJEST., 7, 291-306. https://doi.org/10.1007/BF03326139
Shahbazi, F., Weber, T. K. D., Oustan, S., Alvyar, Z., Jeon, S., & Minasny, B. (2023). Uncovering the effects of Urmia Lake desiccation on soil chemical ripening using advanced mapping techniques. Catena., 232, 107440. https://doi.org/10.1016/j.catena.2023.107440
Shakeri, A., Moore, F., & Modabberi, S. (2009). Heavy metal contamination and distribution in the Shiraz industrial complex zone soil, South Shiraz, Iran. World Appl. Sci. J., 6(3), 413-425.
Skakun, R. S., Wulder, M. A., & Franklin, S. E. (2003). Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sens. Environ., 86(4), 433-443. https://doi.org/10.1016/S0034-4257(03)00112-3
Wang, J., Zhang, X., Yang, Q., Zhang, K., Zheng, Y., and Zhou, G. (2018). Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China. Journal of Environmental Sciences, 71, 283-291. https://doi.org/10.1016/j.jes.2018.05.031
Wang, Y., Duan, X., & Wang, L. (2020). Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ., 710, 134953. https://doi.org/10.1016/j.scitotenv.2019.134953
Weiss, A. (2001, July). Topographic position and landforms analysis. (Poster presented at the ESRI User Conference, Vol. 200, San Diego, CA).
Wieczorek, J., & Baran, A. (2022). Pollution indices and biotests as useful tools for the evaluation of the degree of soil contamination by trace elements. J. Soils Sediments., 1-18. https://doi.org/10.1007/s11368-021-03091-x
Wilson, J. P., & Gallant, J. C. (2000). Digital terrain analysis. Terrain analysis: Principles and applications, 6(12), 1-27. (ISBN: 978-0-471-32188-0)
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens., 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179
Yang, P., Mao, R., Shao, H., & Gao, Y. (2009). The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China. C. R. Biol., 332(6), 558-566. https://doi.org/10.1016/j.crvi.2009.01.004
Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., & Finke, P. (2019). Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma., 338, 445-452. https://doi.org/10.1016/j. geoderma.2018.09.006
Zhao, Y., Wang, Z., Sun, W., Huang, B., Shi, X., & Ji, J. (2010). Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban–rural transition area in Yangtze River Delta region of China. Geoderma., 156(3-4), 216-227. https://doi.org/10.1016/j.geoderma.2010.02.020