Experimental and Theoretical Study on the Ability of Microbial Fuel Cell for Electricity Generation

Document Type : Original Research Paper


1 Environmental Engineering Department, Faculty of Engineering, Mustansiriyah University Baghdad 10052, Iraq.

2 Environmental Engineering Department, Faculty of Engineering, Baghdad University, Baghdad 10071, Iraq


The present study aims at designing a promising Microbial Fuel Cell (MFC) to utilize wastewater in order to generate electricity. Two types of salt bridge have been used in MFC (KCl and NaCl). The maximum electricity generation with 1M KCl and NaCl has been 823 and 713 mV, respectively. Varied salt concentrations (0.5M, 1M, 2M, and 3M) of salt bridge in MFC have been analyzed with different factors like temperature, type of electrode, configuration, and surface area of electrode being studied. The optimum temperature is found to be 32Co, with the optimum type of electrode being graphite rod, while the optimum configuration and surface area of electrode is graphite plate with surface area of 183.6 cm2. Artificial Neural Network (ANN) has been employed to predict voltage production of MFC and compare it with the experimental voltage. Multiple   correlation methodology has optimized the voltage production with the correlation coefficient (R2) being 0.999.


Ali, A.H., Abdul Razaq, Z., Tlaiaa, Y. and Khishala, A.D. (2016). Methane biogas production from mixing of algae and municipal solid waste by anaerobic digestion. Int. J. Environ. Res., 10(4): 613-624.
Allen, R.M. and Bennetto, H.P. (1993). Microbial fuel-cells: electricity production from carbohydrates. Appl. Biochem. Biotechnol., 39(40): 27–40.
Anand, P., Shaheen, A. and Soomro, S.A. (2015). Impact of Salt Concentrations on Electricity Generation using Hostel Sludge Based Dual Chambered Microbial Fuel Cell. Bioprocess Biotech., 5 (8): 1-6.
Chae, K.J., Choi, M., Ajayi, F.F., Park, W., Chang, I.S. and Kim, I.S. (2008). Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energ. Fue., 22 (1): 169–176.
Choi, Y., Jung, E., Kim, S. and Jung, S. (2003). Membrane fluidity sensoring microbial fuel cell. Bioelectrochemist., 59: 121–127.
 Davis, F. and Higson, S.P.J. (2007). Biofuel cells—recent advances and applications. Biosens. Bioelectron., 22: 124–135.
Ditzig, J., Liu, H. and Logan, B.E. (2007). Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int. J. Hyd. En., 32(13): 2296-2304.
Gil, G.C., Chang, I.S., Kim, B.H., Kim, M., Jang, J.Y. and Park, H.S. (2003). Operational parameters affecting the performance of a mediatorless microbial fuel cell. Biosens. Bioelectron., 18: 327–34.
Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996). Neural network design. University of Colorado, Boston, MA. PWS. publishing, USA. 44-48.
Huaining, H.u. (2009). Development of continuous microbial fuel cell for renewable energy production from wastewater. PhD thesis, University of Nottingham.
Ieropoulos, I.A., Greenman, J., Melhuish, C. and Hart, J. (2005). Comparative study of three types of microbial fuel cell. Enzy. Microb. Tech., 37: 238-245.
Kinoshita, K., Larnon, F. and Cairns E. (1988). Solid oxide fuel cell, in: Fuel cell handbook (Appleby, A. J.), 87-104.
Larminie, J., Dicks, A. and McDonald, M. S. (2003). Fuel cell systems explained (Vol. 2). Chichester, UK: J. Wiley. Lee, S.A., Choi, Y., Jung, S. and Kim, S. (2002).  Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemist., 57:173–8.
Li, H., Tang, Y., Wang, Z., Shi, Z., Wu, S., Song, D., Zhang, J., Fatih, K., Zhang, J., Wang, H., Liu, Z., Abouatallah, R. and Mazza, A. (2008). A review of water flooding issues in the proton exchange membrane fuel cell. J. Pow. Sour., 178 (1): 103–117.
Liu, H. and Logan, B.E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 38: 4040–4046.
Logan, B.E. and Regan, J.M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Tren. Micro., 14: 512-518.
Lovely, D.R. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotech., 17: 327–32.
Min, B., Roman, O.B. and Angelidaki, I. (2008). Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotech. Lett., 30(7): 1213–1218.
Moon, H., Chang, I.S. and Kim, B.H. (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour. Technol.,97: 621–7.
Movagharnejad, K. and Nikzad, M. (2007). Modeling of tomato drying using artificial neural network. Comput. Elect. Agric., 59(1-2): 78-85.
Mustakeem, M. (2015). Electrode materials for microbial fuel cells: nanomaterial approach. Mater. Renew. Sustain. Energ., 4:22.
Picioreanu, C., Head, I.M., Katuri, K.P., Loosdrecht, M. and Scott, K. (2007). A computational model for biofilm-based microbial fuel cells. Water Res., 41(13): 2921-2940.
Picioreanu ,C., Loosdrecht, M., Curtis, T.P. and Scott, K. (2010). Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemist., 78(1): 8-24.
Rabaey, K., Lissens, G., Siciliano, S.D. and Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotec. Lett.,25:  1531-1535.
Ramanavicius, A., Kausaitea, A. and Ramanaviciene, A. (2008). Enzymatic biofuel cell based on anode and cathode powered by ethanol, Biosens. Bioelect., 24: 767-772.
Rismani, Y.H., Carver, S.M., Christy, A.D. and Tuovinen, O.H. (2008). Cathodic limitations in microbial fuel cells: an overview. J. Pow. Sour., 180 (2): 683-694.
Wang, C.Y. (2004). Fundamental models for fuel cell engineering. Chem. Rev., 104(10): 4727-4766.
Wang, H.Y., Bernarda, A., Huang, C.Y., Lee, D.J. and Chang, J.S. (2011). Micro-sized microbial fuel cell: a mini-review. Bioresour. Technol., 102(1): 235-243.
Zhan, Y.L., Zhang, P.P., Yan, G.X. and Guo, S.H. (2008). Constructing and operating of mediator- and membrane-less microbial fuel cell. J. Chem. Eng. Chinese Univ., 22(1): 177-181.