Ali, A.H., Abdul Razaq, Z., Tlaiaa, Y. and Khishala, A.D. (2016). Methane biogas production from mixing of algae and municipal solid waste by anaerobic digestion. Int. J. Environ. Res., 10(4): 613-624.
Allen, R.M. and Bennetto, H.P. (1993). Microbial fuel-cells: electricity production from carbohydrates. Appl. Biochem. Biotechnol., 39(40): 27–40.
Anand, P., Shaheen, A. and Soomro, S.A. (2015). Impact of Salt Concentrations on Electricity Generation using Hostel Sludge Based Dual Chambered Microbial Fuel Cell. Bioprocess Biotech., 5 (8): 1-6.
Chae, K.J., Choi, M., Ajayi, F.F., Park, W., Chang, I.S. and Kim, I.S. (2008). Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energ. Fue., 22 (1): 169–176.
Choi, Y., Jung, E., Kim, S. and Jung, S. (2003). Membrane fluidity sensoring microbial fuel cell. Bioelectrochemist., 59: 121–127.
Davis, F. and Higson, S.P.J. (2007). Biofuel cells—recent advances and applications. Biosens. Bioelectron., 22: 124–135.
Ditzig, J., Liu, H. and Logan, B.E. (2007). Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int. J. Hyd. En., 32(13): 2296-2304.
Gil, G.C., Chang, I.S., Kim, B.H., Kim, M., Jang, J.Y. and Park, H.S. (2003). Operational parameters affecting the performance of a mediatorless microbial fuel cell. Biosens. Bioelectron., 18: 327–34.
Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996). Neural network design. University of Colorado, Boston, MA. PWS. publishing, USA. 44-48.
Huaining, H.u. (2009). Development of continuous microbial fuel cell for renewable energy production from wastewater. PhD thesis, University of Nottingham.
Ieropoulos, I.A., Greenman, J., Melhuish, C. and Hart, J. (2005). Comparative study of three types of microbial fuel cell. Enzy. Microb. Tech., 37: 238-245.
Kinoshita, K., Larnon, F. and Cairns E. (1988). Solid oxide fuel cell, in: Fuel cell handbook (Appleby, A. J.), 87-104.
Larminie, J., Dicks, A. and McDonald, M. S. (2003). Fuel cell systems explained (Vol. 2). Chichester, UK: J. Wiley. Lee, S.A., Choi, Y., Jung, S. and Kim, S. (2002). Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemist., 57:173–8.
Li, H., Tang, Y., Wang, Z., Shi, Z., Wu, S., Song, D., Zhang, J., Fatih, K., Zhang, J., Wang, H., Liu, Z., Abouatallah, R. and Mazza, A. (2008). A review of water flooding issues in the proton exchange membrane fuel cell. J. Pow. Sour., 178 (1): 103–117.
Liu, H. and Logan, B.E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 38: 4040–4046.
Logan, B.E. and Regan, J.M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Tren. Micro., 14: 512-518.
Lovely, D.R. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotech., 17: 327–32.
Min, B., Roman, O.B. and Angelidaki, I. (2008). Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotech. Lett., 30(7): 1213–1218.
Moon, H., Chang, I.S. and Kim, B.H. (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour. Technol.,97: 621–7.
Movagharnejad, K. and Nikzad, M. (2007). Modeling of tomato drying using artificial neural network. Comput. Elect. Agric., 59(1-2): 78-85.
Mustakeem, M. (2015). Electrode materials for microbial fuel cells: nanomaterial approach. Mater. Renew. Sustain. Energ., 4:22.
Picioreanu, C., Head, I.M., Katuri, K.P., Loosdrecht, M. and Scott, K. (2007). A computational model for biofilm-based microbial fuel cells. Water Res., 41(13): 2921-2940.
Picioreanu ,C., Loosdrecht, M., Curtis, T.P. and Scott, K. (2010). Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemist., 78(1): 8-24.
Rabaey, K., Lissens, G., Siciliano, S.D. and Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotec. Lett.,25: 1531-1535.
Ramanavicius, A., Kausaitea, A. and Ramanaviciene, A. (2008). Enzymatic biofuel cell based on anode and cathode powered by ethanol, Biosens. Bioelect., 24: 767-772.
Rismani, Y.H., Carver, S.M., Christy, A.D. and Tuovinen, O.H. (2008). Cathodic limitations in microbial fuel cells: an overview. J. Pow. Sour., 180 (2): 683-694.
Wang, C.Y. (2004). Fundamental models for fuel cell engineering. Chem. Rev., 104(10): 4727-4766.
Wang, H.Y., Bernarda, A., Huang, C.Y., Lee, D.J. and Chang, J.S. (2011). Micro-sized microbial fuel cell: a mini-review. Bioresour. Technol., 102(1): 235-243.
Zhan, Y.L., Zhang, P.P., Yan, G.X. and Guo, S.H. (2008). Constructing and operating of mediator- and membrane-less microbial fuel cell. J. Chem. Eng. Chinese Univ., 22(1): 177-181.