Remediation of Contaminated Water with Chromium VI by Sorption in Surface-activated-nanocellulose spheroids

Document Type : Original Research Paper


Pontificia Universidad Católica del Ecuador, Centro Neotropical para la Investigación de la Biomasa -CNIB-, Quito, Ecuador


Chromium VI is a frequent pollutant of industrial liquid effluents. It is a substance classified as a carcinogen group I. In this study, a Cr VI sorption mechanism was developed by using nanocellulose spheroids (hydrogel) obtained from ivory nut. Cr VI was detected in water by a colorimetric method, using 1, 5-diphenylcarbazide at λ 540 nm. Then, the sorption capacity of nanocellulose spheroids was tested by varying the solution's pH and temperatures. The outcome of the experiment shows that the most efficient pollutant’s adsorption conditions are occur at pH 4 and 25 °C. Removal percentages of Cr VI reached 91.29% (+/-1.36) and 95.33% (+/- 0.86). Additionally, the sorption kinetics showed that the adsorption reaction on the material reaches its equilibrium 20 to 30 minutes after the reaction starts. Finally, an analysis of adsorption isotherms showed a high adjustment with the Langmuir and Freundlinch isotherms. In this frame, this work’s results show that nanocellulose beads are an interesting alternative to efficiently reduce Cr VI from industrial and drinking water.


Abdolali, A., Ngo, H., Guo, W., Zhou, L., Zhang, J., Liang, S. and Liu, Y. (2017). Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour. Technol., 229;78-87.
Abraham, E., Deepa, B., Pothan, L. A., Jacob, M., Thomas, S., Cvelbar, U. and Anandjiwala, R. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym., 86(4); 1468-1475.
Adimalla, N. (2020). Heavy Metals Pollution Assessment and Its Associated Human Health Risk Evaluation of Urban Soils from Indian Cities: A Review. Environ. Geochem. Health,42 (1); 173–90.
Ali, I. (2014). Water treatment by adsorption columns: evaluation at ground level". Sep. Purif. Rev., 43 (3); 175-205.
Baran, A., Bıçak, E., Baysal, Ş. H. and Önal, S. (2007). Comparative studies on the adsorption of Cr(VI) ions on to various sorbents. Bioresour. Technol., 98(3); 661–665.
Bhattacharya, S., Saha, I., Mukhopadhyay, A., Chattopadhyay, D. and Chand, U. (2013). Role of nanotechnology in water treatment and purification: potential applications and implications. Int J Chem Sci Technol., 3(3); 59-64.
Bingol, A., Ucun, H., Bayhan, Y. K., Karagunduz, A., Cakici, A. and Keskinler, B. (2004). Removal of Chromate Anions from Aqueous Stream by a Cationic Surfactant-Modified Yeast. Bioresour. Technol. 94 (3); 245–49.
Bora, T. and Dutta, J. (2014). Applications of nanotechnology in wastewater treatment — a review. J. Nanosci. Nanotechnol., 14 (1); 613-626.
Cainglet, A., Tesfamariam, A. and Heiderscheidt, E. (2020). Organic Polyelectrolytes as the Sole Precipitation Agent in Municipal Wastewater Treatment. J. Environ. Manage. 271; 111002.
Campaña-Pérez, J. F., Barahona, P. P., Martín-Ramos, P. and Barriga, E. J. C. (2019). Ecuadorian yeast species as microbial particles for Cr (VI) biosorption. Environ. Sci. Pollut. Res., 26(27); 28162-28172.
Chaabouni, O. and Boufi, S. (2017). Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties. Carbohydr. Polym., 156; 64-70.
Chen, Y., Liu, H., Geng, B., Ru, J., Cheng, C., Zhao, Y. and Wang, L. 2017. A reusable surface-quaternized nanocellulose-based hybrid cryogel loaded with N-doped TiO2 for self-integrated adsorption / photo-degradation of methyl orange dye.    RSC Adv., 7 (28); 17279-17288.
Chowdhury, S., Mazumder, M. J., Al-Attas, O. and Husain, T. (2016). Heavy Metals in Drinking Water: Occurrences, Implications, and Future Needs in Developing Countries. Sci. Total Environ. 569; 476–488.
De France, K. , Hoare, T. and Cranston, E.  (2017). Review of hydrogels and aerogels containing nanocellulose. Chem. Mater., 29(11);4609-4631.
Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K. and Pothan, L.  (2015). Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22(2); 1075–1090.
Dhali, K., Ghasemlou, M., Daver, F., Cass, P. and Adhikari, B.  (2021). A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ., 15; 145871.
Figueira, G. M., Park, K. J., Brod, F. P. R. and Honorio, S. L. (2004). Evaluation of desorption isotherms, drying rates and inulin concentration of chicory roots (Cichorium intybus L.) with and without enzymatic inactivation. J. Food Eng., 63(3); 273-280.
Fijałkowska, G., Wiśniewska, M. and Szewczuk-Karpisz, K. (2020). Adsorption and electrokinetic studies in kaolinite/anionic polyacrylamide/chromate ions system. Colloids Surf., A, 603; 125232.
Fu, F. and Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3); 407-418.
Gan, P. G., Sam, S. T., Abdullah, M. F. B. and Omar, M. F. (2020). Thermal Properties of Nanocellulose-Reinforced Composites: A Review. J. Appl. Polym. Sci. 137 (11); 48544.
Gerba, C. (2015). Quaternary ammonium biocides: efficacy in application. Appl. Environ. Microbiol., 81 (2); 464-469.
Giles, C. H., Smith, D. and Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci., 47 (3); 755-765.
Gupta, P. and Batul, D. (2017). Bacterial Exopolysaccharide Mediated Heavy Metal Removal: A Review on Biosynthesis, Mechanism and Remediation Strategies. Appl. Biotechnol. Rep. 13; 58-71.
Haafiz, M. M., Eichhorn, S. J., Hassan, A. and Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym., 93(2); 628-634.
Haroon, H., Shah, J. A., Khan, M. S., Alam, T., Khan, R., Asad, S. Arif, M., Farooq, G., Iqbal, M. and Bilal, M. (2020). Activated carbon from a specific plant precursor biomass for hazardous Cr (VI) adsorption and recovery studies in batch and column reactors: Isotherm and kinetic modeling. J. Water Process. Eng., 38; 101577.
Harris, J. T. and McNeil, A. J. (2020). Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue. J. Polym. Sci., 58(21); 3042-3049.
He, X., Cheng, L., Wang, Y., Zhao, J., Zhang, W. and Lu, C. (2014). Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr (VI) from toilet. Carbohydr. Polym., 111; 683-687.
Huang, Y., Zeng, Q., Hu, L., Xiong, D., Zhong, H. and He, Z. (2020). Column study of enhanced Cr (Ⅵ) removal and removal mechanisms by Sporosarcina saromensis W5 assisted bio-permeable reactive barrier. J. Hazard. Mater., 405; 24115.
Jain, P., Varshney, S., Srivastava, S. (2017). Site-specific functionalization for chemical speciation of Cr (III) and Cr (VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling. Appl. Water Sci., 7(4); 1827-1839.
Jiang, W., Cai, Q., Xu, W., Yang, M., Cai, Y., Dionysiou, D., O'Shea, K. (2014). Cr (VI) Adsorption and Reduction by Humic Acid Coated on Magnetite. Environ. Sci. Technol., 48 (14); 8078–8085.
Kalidhasan, S., Gupta, P. A., Cholleti, V. R., Kumar, A. S. K., Rajesh, V. and Rajesh, N. (2012). Microwave assisted solvent free green preparation and physicochemical characterization of surfactant-anchored cellulose and its relevance toward the effective adsorption of chromium. J. Colloid Interface Sci., 372 (1); 88-98.
Kardam, A., Raj, K. R., Srivastava, S. and Srivastava, M. M. (2014). Nanocellulose Fibers for Biosorption of Cadmium, Nickel, and Lead Ions from Aqueous Solution. Clean Technol. Environ. Policy 16 (2); 385–93.
Karthikeyan, T., Rajgopal, S., Miranda, L. (2005). Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater., 124 (1-3); 192-199.
Klemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., Rauchfuss, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Mater. Today, 21(7); 720-748.
Kumar, V., Sharma, A., Kumar, R., Bhardwaj, R., Kumar Thukral, A. and Rodrigo-Comino, J. (2020). Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. HERA, 26(1), 1-16.
Krishnamoorthy, K. (Ed.). (2021). Novel Nanomaterials: Energy storage and harvesting applications of nanomaterials.
Lee, S. and Lee, D. K. (2018). What is the proper way to apply the multiple comparison test?. Korean J. Anesthesiol., 71 (5); 353.
Leupin, O. X., Hug, S. J. and Badruzzaman, A. B. M. (2005). Arsenic Removal from Bangladesh Tube Well Water with Filter Columns Containing Zerovalent Iron Filings and Sand. Environ. Sci. Technol., 39(20); 8032–8037.
Li, M., Liu, X., Liu, N., Guo, Z., Singh, PK, & Fu, S. (2018). Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf., A, 554; 122-128.
Li, Y., Li, G., Zou, Y., Zhou, Q. and Lian, X. (2013). Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose, 21(1); 301–309.
Li, Z., Bowman, R. 1998. Sorption of perchlorethylene by surfactant-modified zeolite as controlled by surfactant loading. Environ. Sci. Technol., 32 (15); 2278-2282.
Lombardo, S. and Thielemans, W. (2019). Thermodynamics of Adsorption on Nanocellulose Surfaces. Cellulose 26 (1); 249–79.
Meier, Hans. 1958. On the Structure of Cell Walls and Cell Wall Mannans from Ivory Nuts and from Dates. BBA, 28; 229–40.
Menon, M. P., Selvakumar, R. and Ramakrishna, S. (2017). Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv., 7(68); 42750-42773.
Mitiku, A. A. (2020). A review on water pollution: causes, effects and treatment methods. Int. J. Pharm. Sci. Rev. Res., 60(2); 94-101.
Mobarak, M., Mohamed, E. A., Selim, A. Q., Sellaoui, L., Lamine, A. B., Erto, A. and Seliem, M. K. (2019). Surfactant–modified serpentine for fluoride and Cr (VI) adsorption in single and binary systems: Experimental studies and theoretical modeling. Chem. Eng. J., 369; 333-343.
Mohamad, S., Mohd Yusof, N. H. and Asman, S. (2013). Effect of Bifunctional Isocyanate Linker on Adsorption of Chromium (VI) Diphenylcarbazide Complex onto b-Cyclodextrin." Chem. Asian J. 25 (4); 2213–20.
Oladoja, N. A., Ololade, I. A., Alimi, O. A., Akinnifesi, T. A. and Olaremu, G. A. (2013). Iron incorporated rice husk silica as a sorbent for hexavalent chromium attenuation in aqueous system. Chem. Eng. Res. Des., 91(12); 2691-2702.
Owa, F. D. (2013). Water Pollution: Sources, Effects, Control and Management. Mediterr. J. Soc. Sci. 4 (8); 65.
Owlad, M., Aroua, M., Daud, W. and Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: a review. Water, Air, Soil Pollut., 200 (1-4); 59-77.
Park, C. H., Keyhan, M., Wielinga, B., Fendorf, S. and Matin, A. (2000). Purification to Homogeneity and Characterization of a Novel Pseudomonas Putida Chromate Reductase. Appl. Environ. Microbiol. 66 (5); 1788–95.
Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A. and Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resour. Convers., 1(1); 32-43.
Portero Barahona, P., Bastridas, B., Gil, J., Ramos, P. and Carvajar, J. (2020). Cellulosic Ethanol: Improving Cost Efficiency by Coupling Semi-Continuous Fermentation and Simultaneous Saccharification Strategies. Processes 8(11); 1459.
Qu, X., Alvarez, P. J. and Li, Q. (2013). Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 47 (12); 3931–46.
Qua, E. H., Hornsby, P. R., Sharma, H. S., Lyons, G. and McCall, R. D. (2009). Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibers. J. Appl. Polym. Sci., 113(4); 2238-2247.
Rezania, Shahabaldin , Ponwaj, M., Talaiekhozani, A., Mohammad, S., Fadhil, M., Mar, S., Sabbaghm, F. and Sairan, F. (2015). Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater. J. Environ. Manage. 163; 125–33.
Romero-González, J., Peralta-Videa, J. R., Rodrı́guez, E., Ramirez, S. L. and Gardea-Torresdey, J. L. (2005). Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J. Chem. Thermodyn., 37(4); 343–347.
Straif, K., Benbrahim-Tallaa, L., Baan, R., Grosse, Y., Secretan, B., El Ghissassi, F. and Cogliano, V. (2009). A review of human carcinogens—part C: metals, arsenic, dusts, and fibres. Lancet Oncol., 10(5); 453-454.
Tovar, C., Ortiz, A., Paternina, E. (2014). Removal of Pb (II), Ni (II) and Cr (VI) in aqueous solutions using chemically modified matrices. Prospectiva, 12 (2); 7-17.
Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N. and Hussin, M. H. (2020). Nanocellulose: from fundamentals to advanced applications. Front. Chem., 8, 392.
Tshikovhi, A., Mishra, S. B. and Mishra, A. K. (2020). Nanocellulose-based composites for the removal of contaminants from wastewater. Int. J. Biol. Macromol., 152; 616-632.
Westall, F. and André, B. (2018). The Importance of Water for Life. Space Sci. Rev. 214 (2); 50.
Wilson, C. and Jones., C. (1993). Bioremediation of Soil Contaminated with Polynuclear Aromatic Hydrocarbons (PAHs): A Review. Environ. Pollut. 81 (3); 229–49.
Yao, C., Wang, F., Cai, Z. and Wang, X. (2016). Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions. RSC Adv., 6 (95); 92648–92654.
Zhang, Z., Cao, H., Song, N., Zhang, L., Cao, Y. and Tai, J. (2020). Long-Term Hexavalent Chromium Exposure Facilitates Colorectal Cancer in Mice Associated with Changes in Gut Microbiota Composition. Food Chem. Toxicol. 138; 111237.
Zhang, Z. Q., Liao, M. C., Zeng, H. Y., Xu, S., Liu, X. J., Du, J. Z., ... and Huang, Q. J. (2014). Temperature effect on chromium (VI) removal by Mg / Al mixed metal oxides as adsorbents. Appl. Clay Sci., 102; 246-253.
Zhu, J., Gu, H., Guo, J., Chen, M., Wei, H., Luo, Z. and Wei, S. (2014). Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr (vi) removal . J. Mater. Chem. A, 2 (7); 2256-2265.