Impact of Microalgae in Domestic Wastewater Treatment: A Lab-Scale Experimental Study

Document Type : Original Research Paper


Civil Engineering Department, Sardar Vallabhbhai National Institute of Technology, P.O. Box 395007, Surat, India



In most developing nations, municipal wastewater treatment is limited to aerobic secondary treatments, expensive and ineffective in removing nutrients from treated effluents before discharge, resulting in eutrophication and imbalance in receiving bodies. As a result, the effectiveness of Chlorella vulgaris for primarily treated wastewater collected from a sewage treatment plant during an 8-hour detention time was investigated in this study. Microalgae have been found to efficiently remove organics and nutrients to levels far below the desired limit in the present research. After algal treatment concentration of COD, phosphate and ammonia reduced to 12.43 mg/L (93.75%), 0.04 mg/L (98.40%) and below detectable limit (100%) respectively. In addition, remarkable reduction was found in solids (TSS, TS and TDS) and EC concentration. The use of microalgae resulted in an increase in DO concentration. As a result, introducing Chlorella vulgaris into a wastewater treatment system can lower nutrient and organics contents without any additional treatment.


Abdel-Raouf, N., Al-Homaidan, A. A. and Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi J. Biol. Sci., 19(3); 257–275. 
Arbib, Z., Ruiz, J., Alvarez-Diaz, P., Garrido-Perez, C. and Perales, J. A. (2014). Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res., 49; 465–474. 
Bhattacharjee, M. and Siemann, E. (2015). Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors. Algae., 30(1); 67–79. 
Boretti, A. and Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water., 2; 15-20.
Cabanelas, I. T. D., Ruiz, J., Arbib, Z., Chinalia, F. A., Garrido-Perez, C., Rogalla, F., Nascimento, I. A. and Perales, J. A. (2013). Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour. Technol., 131; 429–436. 
Caporgno, M. P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J. and Bengoa, C. (2015). Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Res., 10; 232–239. 
Chaudhry, Q., Blom-Zandstra, M., Gupta, S. and Joner, E. J. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res., 12(1); 34–48. 
De-Bashan, L. E. and Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol., 101(6); 1611–1627. 
Delrue, F., Alvarez-Díaz, P. D., Fon-Sing, S., Fleury, G. and Sassi, J. F. (2016). The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies., 9(3); 132-151.
Ding, Y., Song, X., Wang, Y. and Yan, D. (2012). Effects of dissolved oxygen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland. Ecol. Eng., 46; 107–111. 
Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Mu, J., Liu, M. and Cui, W. (2016). Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. J. Chem. Technol. Biotechnol., 91(10); 2713–2719. 
Goncalves, A. L., Pires, J. C. M. and Simoes, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Res., 24, 403–415. 
Hoffmann, J. P. (1998). Wastewater treatment with suspended and non suspended algae. J. Phycol., 34(5), 757–763. 
Hoh, D., Watson, S., and Kan, E. (2016). Algal biofilm reactors for integrated wastewater treatment and biofuel production: A review. Chemi. Eng. J., 287, 466–473.
Hwang, J. H., Church, J., Lee, S. J., Park, J. and Lee, W. H. (2016). Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci., 33(11), 882–897. 
Kaya, V. M., De la Noue, J. and Picard, G. (1995). A comparative study of four systems for tertiary wastewater treatment by Scenedesmus bicellularis: New technology for immobilization. J. Appl. Phycol., 7(1), 85–95. 
Khan, M. I., Shin, J. H. and Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories., 17(1), 1–21. 
Levlin, E. (2010). Conductivity measurements for controlling municipal wastewater treatment. In: Research and application of new technologies in wastewater treatment and municipal solid waste disposal in Ukraine, Sweden and Poland; 51–62.
Li, Y., Slouka, S. A., Henkanatte-Gedera, S. M., Nirmalakhandan, N. and Strathmann, T. J. (2019). Seasonal treatment and economic evaluation of an algal wastewater system for energy and nutrient recovery. Water Res. Technol., 5(9); 1545–1557. 
Markou, G. and Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters : A review. Appl. Ener., 88(10), 3389–3401. 
Mata, T. M., Martins, A. A. and Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14(1); 217–232. 
Moondra, N., Jariwala, N. D. and Christian, R. A. (2020). Sustainable treatment of domestic wastewater through microalgae. Int J Phytoremediation., 22(14); 1480-1486. 
Moondra, N., Jariwala, N. D., and Christian, R. A. (2021a). Integrated approach of phycoremediation in wastewater treatment: an insight. WCM., 5(1); 8–12. 
Moondra, N., Jariwala, N. D., and Christian, R. A. (2021b). Microalgae based wastewater treatment: a shifting paradigm for the developing nations. Int J Phytoremediation., 23(7); 765-771. 
Park, J. B. K., Craggs, R. J. and Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Biores. Technol., 102(1); 35–42. 
Quijano, G., Arcila, J. S. and Buitron, G. (2017). Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment. Biotechnol. Adv., 35(6), 772–781. 
Rawat, I., Ranjith Kumar, R., Mutanda, T. and Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy., 88(10); 3411–3424. 
Renuka, N., Sood, A. and Ratha, S. K. (2013). Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J. Appl. Phycol., 25(5); 1529–1537. 
Samori, C. and Samori, G. (2012). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment : Part I.  Water Res., 47(2); 791-801.
Saxena, G., Chandra, R. and Bhargava R. N. (2016). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev. Environ. Contam.Toxicol., 240; 31–69.
Schumacher, G. and Sekoulov, I. (2003). Improving the effluent of small wastewater treatment plants by bacteria reduction and nutrient removal with an algal biofilm. Water Sci. Technol., 48(2), 373–380.
Wagner, M. and Loy, A. (2002). Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol., 13(3); 218–227. 
Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y. and Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol., 162(4), 1174–1186. 
Wang, M., Kuo-Dahab, W. C., Dolan, S. and Park, C. (2014). Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour. Technol., 154; 131–137. 
Whitton, R., Le Mevel, A., Pidou, M., Ometto, F., Villa, R. and Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res., 91, 371–378.