Effective Removal of Indigo Carmine in Aqueous Solutions using a Low-Cost Adsorbent Developed from Corn Husk Waste: Synthesis, Batch, and Optimization Studies

Document Type : Original Research Paper


1 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, PO Box 25163 Padang, IndonesiaDepartment of Pharmacy, Fort De Kock University, P.O. Box 26117 Bukittinggi, Indonesia.

2 Department of Pharmacy, Fort De Kock University, PO Box 26117 Bukittinggi, Indonesia

3 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, PO Box 25163 Padang, Indonesia



Acid-activated corn husk waste (CHW) was used to investigate the adsorption mechanism of Indigo Carmine (IC) dye from an aqueous solution. The effect of different operating parameters such as pH (1-7), initial IC dye concentration (40-400 mg/L), contact time (5-75 min), and heating temperature (25–200 °C) was measured on the removal of IC dye by the CHW. The maximum uptake of IC dye was observed at an initial pH of 2. The maximum capacity of 13.57 mg/g and the maximum dye removal of 89.01 % in wastewater. The adsorbents were characterized using Fourier Transforms Infrared Spectrophotometry (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray Fluorescence (XRF), and Thermogravimetry Analysis. The characterization process reveals the differences in adsorbent characteristics before and after the adsorption processes. The Langmuir showed the best fitting (R2 = 0.977) and described multilayer adsorption on diverse surfaces. The pseudo-second-order kinetic model best correlated with the experimental data (R2 = 0.981). Thermodynamics revealed that adsorption was favorable spontaneous and exotherm. The study's results indicated that using CHW as a low-cost adsorbent to treat IC dye was efficient and beneficial to the environment.


Main Subjects

Abbas, M., Harrache, Z., Aksil, T., & Trari, M. (2022). Removal of indigo carmine (IC) in aqueous solution onto activated pomegranate peel (APP) by adsorption process: Kinetic and thermodynamic studies. Journal of Engineered Fibers and Fabrics, 17(Ic). https://doi.org/10.1177/15589250211018195
Abderrahim, B., Abderrahman, E., Mohamed, A., Fatima, T., Abdesselam, T., & Krim, O. (2015). Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study. World Journal of Environmental Engineering, Vol. 3, 2015, Pages 95-110, 3(4), 95–110. https://doi.org/10.12691/WJEE-3-4-1
Ahmad, R., & Ansari, K. (2020). Polyacrylamide-Grafted Actinidia deliciosa peels powder (PGADP) for the sequestration of crystal violet dye: isotherms, kinetics and thermodynamic studies. Applied Water Science, 10(8), 1–15. https://doi.org/10.1007/s13201-020-01263-7
Al-Abbad, E., & Alakhras, F. (2020). Removal of dye acid red 1 from aqueous solutions using chitosan-iso-vanillin sorbent material. Indonesian Journal of Science and Technology, 5(3), 352–365. https://doi.org/10.17509/ijost.v5i3.24986
Alamrani, N. A., & Al-Aoh, H. A. (2021). Elimination of Congo Red Dye from Industrial Wastewater Using Teucrium polium L. as a Low-Cost Local Adsorbent. Adsorption Science and Technology, 2021. https://doi.org/10.1155/2021/5728696
Amer, H., El-Gendy, A., & El-Haggar, S. (2017). Removal of lead (II) from aqueous solutions using rice straw. Water Science and Technology, 76(5), 1011–1021. https://doi.org/10.2166/wst.2017.249
Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017, 1–11. https://doi.org/10.1155/2017/3039817
Bazan, A., & Robert, W. (2023). Adsorption of cationic dye on nanostructured biocarbons : kinetic and thermodynamic study. Applied Nanoscience, 0123456789. https://doi.org/10.1007/s13204-023-02775-9
Chakraborty, T. K., Ghosh, G. C., Akter, M. N., Audhikary, K., Islam, M. S., Ghosh, P., Zaman, S., Habib, A., & Kabir, A. H. M. E. (2021). Biosorption of Reactive Red 120 Dye from Aqueous Solutions by using Mahagoni (Swietenia mahagoni) Wood and Bark Charcoal: Equilibrium, and Kinetic Studies. Pollution, 7(4), 905–921. https://doi.org/10.22059/POLL.2021.325135.1110
Chandra, P. P., Visakoti, V., & Naidu, D. A. (2019). Studies on Biosorption of Alizarin Red dye using Prawn Shell Waste Powder. International Research Journal of Engineering and Technology (IRJET), 06(02).
de Oliveira Brito, S. M., Andrade, H. M. C., Soares, L. F., & de Azevedo, R. P. (2010). Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials, 174(1–3), 84–92. https://doi.org/10.1016/j.jhazmat.2009.09.020
Ferreira, R. M., de Oliveira, N. M., Lima, L. L. S., Campista, A. L. D. M., & Stapelfeldt, D. M. A. (2019). Adsorption of indigo carmine on Pistia stratiotes dry biomass chemically modified. Environmental Science and Pollution Research, 26(28), 28614–28621. https://doi.org/10.1007/s11356-018-3752-x
Ghosh, G. C., Chakraborty, T. K., Zaman, S., Nahar, M. N., & Kabir, A. H. M. E. (2020). Removal of methyl orange dye from aqueous solution by a low-cost activated carbon prepared from mahagoni (Swietenia mahagoni) Bark. Pollution, 6(1), 171–184. https://doi.org/10.22059/POLL.2019.289061.679
Güler, M., Çetintaş, S., & Bingöl, D. (2021). Cinnamon bark as low-cost and eco-friendly adsorbent for the removal of indigo carmine and malachite green dyestuffs. International Journal of Environmental Analytical Chemistry, 101(6), 735–757. https://doi.org/10.1080/03067319.2019.1670171
Gupta, T., Ansari, K., Lataye, D., Kadu, M., Khan, M. A., Mubarak, N. M., Garg, R., & Karri, R. R. (2022). Adsorption of Indigo Carmine Dye by Acacia nilotica sawdust activated carbon in fixed bed column. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-19595-6
Hasan, M. M., Shenashen, M. A., Hasan, M. N., Znad, H., Salman, M. S., & Awual, M. R. (2021). Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. Journal of Molecular Liquids, 323, 114587. https://doi.org/10.1016/j.molliq.2020.114587
Hevira, L., Zilfa, Z., Rahmayeni, R., Ighalo, J. O., & Zein, R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell. Journal of Environmental Chemical Engineering, 8(5), 1–11. https://doi.org/10.1016/j.jece.2020.104290
Hoang, M. T., Pham, T. D., Pham, T. T., Nguyen, M. K., Nu, D. T. T., Nguyen, T. H., Bartling, S., & Van der Bruggen, B. (2021). Esterification of sugarcane bagasse by citric acid for Pb2+ adsorption: effect of different chemical pretreatment methods. Environmental Science and Pollution Research, 28(10), 11869–11881. https://doi.org/10.1007/s11356-020-07623-9
Huang, F. Y. (2012). Thermal properties and thermal degradation of cellulose tri-stearate (CTs). Polymers, 4(2), 1012–1024. https://doi.org/10.3390/polym4021012
Hwa, S., Huey, C., Islam, A., Abdulkareem-alsultan, G., Joseph, C. G., Janaun, J., Hin, Y., Khandaker, S., Jahirul, G., Znad, H., & Awual, R. (2022). Sustainable toxic dyes removal with advanced materials for clean water production : A comprehensive review. 332(December 2021). https://doi.org/10.1016/j.jclepro.2021.130039
Islam, A., Hwa, S., Taufiq-yap, Y. H., Huey, C., Vo, D. N., Lokman, M., Hasan, M., Khan, M. A. R., Nur, A. S. M., & Awual, R. (2021). Resources , Conservation & Recycling Step towards the sustainable toxic dyes removal and recycling from aqueous solution- A comprehensive review. Resources, Conservation & Recycling, 175(May), 105849. https://doi.org/10.1016/j.resconrec.2021.105849
Kabir, M. M., Mouna, S. S. P., Akter, S., Khandaker, S., Mohammed, N., Mohinuzzaman, M., Islam, A., & Shenashen, M. A. (2021). Tea waste based natural adsorbent for toxic pollutant removal from waste samples. Journal of Molecular Liquids, 322, 115012. https://doi.org/10.1016/j.molliq.2020.115012
Kubra, K. T., Salman, M. S., & Hasan, M. N. (2021). Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. Journal of Molecular Liquids, 328, 115468. https://doi.org/10.1016/j.molliq.2021.115468
Kubra, K. T., Salman, M. S., Znad, H., & Hasan, M. N. (2021). Efficient encapsulation of toxic dye from wastewater using biodegradable polymeric adsorbent. Journal of Molecular Liquids, 329, 115541. https://doi.org/10.1016/j.molliq.2021.115541
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances (24(4)). Kungliga Svenska Vetenskapsademiens Handlingar.
Lakshmi, U. R., Srivastava, V. C., Mall, I. D., & Lataye, D. H. (2009). Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye. Journal of Environmental Management, 90(2), 710–720. https://doi.org/10.1016/j.jenvman.2008.01.002
Mahmoodi, N. M., Arami, M., Bahrami, H., & Khorramfar, S. (2011). The Effect of pH on the Removal of Anionic Dyes from Colored Textile Wastewater Using a Biosorbent. Journal of Applied Polymer Science, 120, 2996–3003. https://doi.org/10.1002/app.33406
Malik, D. S., Jain, C. K., Yadav, A. K., Kothari, R., & Pathak, V. V. (2016). Removal of methylene blue dye in aqueous solution by agricultural waste. 3(7), 864–880.
Md. Munjur, H., Hasan, M. N., Awual, M. R., Islam, M. M., Shenashen, M. A., & Iqbal, J. (2020). Biodegradable natural carbohydrate polymeric sustainable adsorbents for efficient toxic dye removal from wastewater. Journal of Molecular Liquids, 319, 114356. https://doi.org/10.1016/j.molliq.2020.114356
Mishra, S., Yadav, S. S., Rawat, S., Singh, J., & Koduru, J. R. (2019). Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. Journal of Environmental Management, 246(June), 362–373. https://doi.org/10.1016/j.jenvman.2019.06.013
Mushtaq, M., Bhatti, H. N., Iqbal, M., & Noreen, S. (2016). Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies. Journal of Environmental Management, 176, 21–33. https://doi.org/10.1016/j.jenvman.2016.03.013
Paşka, O. M., Pəcurariu, C., & Muntean, S. G. (2014). Kinetic and thermodynamic studies on methylene blue biosorption using corn-husk. RSC Advances, 4(107), 62621–62630. https://doi.org/10.1039/c4ra10504d
Patil, S. A., Kumbhar, P. D., Patil, S. K., Vadiyar, M. M., Suryawanshi, U. P., Jambhale, C. L., Anuse, M. A., Kim, J. H., & Kolekar, S. S. (2020). Dynamic adsorption of toxic indigo carmine dye on bio-inspired synthesised Fe3O4 nanoparticles: kinetic and thermodynamic study. International Journal of Environmental Analytical Chemistry, 00(00), 1–23. https://doi.org/10.1080/03067319.2020.1734197
Paul, G., Murthy, R., & Bengal-, W. (2016). Studies On Bio-Chemical Thermodynamics Of Lead Biosorption From Aqueous Chemical Thermodynamics Of Lead Biosorption From Aqueous System Using Corn Husk Biomass As Biosorbant Agent. 8(09), 3792–3798.
Ponce, J., Andrade, J. G. da S., dos Santos, L. N., Bulla, M. K., Barros, B. C. B., Favaro, S. L., Hioka, N., Caetano, W., & Batistela, V. R. (2021). Alkali pretreated sugarcane bagasse, rice husk and corn husk wastes as lignocellulosic biosorbents for dyes. Carbohydrate Polymer Technologies and Applications, 2(March), 1–8. https://doi.org/10.1016/j.carpta.2021.100061
Purnaningtyas, M. A. K., Sudiono, S., & Siswanta, D. (2020). Synthesis of activated carbon/chitosan/alginate beads powder as an adsorbent for methylene blue and methyl violet 2b dyes. Indonesian Journal of Chemistry, 20(5), 1119–1130. https://doi.org/10.22146/ijc.49026
Rahman, A. K. M. L., Sarker, A., Ahmed, N., Mustofa, M., & Awal, A. (2021). Efficient removal of toxic textile dye using petiole part (stem) of nymphaea alba. Pollution, 7(3), 643–656. https://doi.org/10.22059/POLL.2021.314204.943
Ramadhani, P., Chaidir, Z., Zilfa, Z., Fauzia, S., & Zein, R. (2021). Isolation of chitosan from shrimp shell (Metapenaeus monoceros) as adsorbent for removal of metanil yellow dyes. Journal of the Iranian Chemical Society, 1–15. https://doi.org/10.1007/s13738-021-02385-8
Sanka, P. M., Rwiza, M. J., & Mtei, K. M. (2020). Removal of Selected Heavy Metal Ions from Industrial Wastewater Using Rice and Corn Husk Biochar. Water, Air, and Soil Pollution, 231(5), 1–13. https://doi.org/10.1007/s11270-020-04624-9
Seenivasan, A., & Panda, T. (2017). Protein Characterization by Thermal Property Measurement. Glass Transition and Phase Transitions in Food and Biological Materials, Cd, 305–391. https://doi.org/10.1002/9781118935682.ch14
Sen, T. K., Afroze, S., & Ang, H. M. (2011). Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water, Air, and Soil Pollution, 218(1–4), 499–515. https://doi.org/10.1007/s11270-010-0663-y
Sengupta, P., & Balomajumder, P. (2014). Potential of Corn Husk Leaves for the Co-Removal of Phenol and Cyanide From Waste Water Using Simultaneous Adsorption and Biodegradation. International Journal of Research in Engineering and Technology, 03(02), 700–707. https://doi.org/10.15623/ijret.2014.0302124
Shan, W., Zhao, Z., Fang, D., Lou, Z., Xu, J., Yue, S., Biswas, B. K., & Xiong, Y. (2013). Investigation on the selective adsorption of Mo(VI) by using modified rice husk and corn straw. Waste and Biomass Valorization, 4(2), 385–393. https://doi.org/10.1007/s12649-012-9149-z
Sharma, S., Hasan, A., Kumar, N., & Pandey, L. M. (2018). Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environmental Science and Pollution Research, 25(22), 21605–21615. https://doi.org/10.1007/s11356-018-2280-z
Sulistiyo, Y. A., Rofi’ah, F., Suwardiyanto, Nugraha, A. S., Zulfikar, & Sunnardianto, G. K. (2020). Isothermal and kinetic adsorption of anionic dye onto impregnated silica gels with aluminum. Environmental Engineering and Management Journal, 19(8), 1299–1308. https://doi.org/10.30638/eemj.2020.123
Szygula, A., Ruiz, M., Guibal, E., & Sastre, A. M. (2008). Removal of an Anionic Reactive Dye by Chitosan and its Regeneration. Energy And Environmental Engineering Series, 1, 24–30. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=AegeanSoftware&SrcApp=NoteExpress&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000262931000005
Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014
Yeo, J. Y. J., Khaerudini, D. S., Soetaredjo, F. E., Waworuntu, G. L., Ismadji, S., Putranto, A., & Sunarso, J. (2023). Experimental and modelling study of adsorption isotherms of amoxicillin, ampicillin and doripenem on bentonite-chitosan composite. South African Journal of Chemical Engineering, 43(October 2022), 38–45. https://doi.org/10.1016/j.sajce.2022.09.013
Yous, R., Cherifi, H., & Khalladi, R. (2019). Comparative mass transfer study of basic and acid magenta adsorption onto natural clay. Indonesian Journal of Chemistry, 19(4), 1031–1042. https://doi.org/10.22146/ijc.41820
Zein, R., Purnomo, J. S., Ramadhani, P., Alif, M. F., & Safni, S. (2022). Lemongrass (Cymbopogon nardus) leaves biowaste as an effective and low-cost adsorbent for methylene blue dyes removal: isotherms, kinetics, and thermodynamics studies. Separation Science and Technology (Philadelphia), 00(00), 1–17. https://doi.org/10.1080/01496395.2022.2058549