Natural Biodegradation Rates of Single-Use Blended Bioplastic Packaging Nylon Entrenched In Freshwater and Marine Water Environments of the Tropics

Document Type : Original Research Paper


Environmental Management and Toxicology Unit, Department of Biological Sciences, Faculty of Basic and Applied Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria



The biodegradation rates of single-use blended bioplastic packaging nylon, nylon 6, and cellulose polymer were assessed in aquatic environments in an attempt to identify real biodegradable bioplastics (RBB). The natural biodegradation rates of the test samples in freshwater and marine water were assessed by respirometric method following the procedure of the American Standard Testing and Materials. The experimental design was arranged thrice in a completely randomized design of 2x4x3. The physicochemical parameters were obtained using the standard methods while the rates of biodegradation were obtained by titration method. Data obtained were analyzed using descriptive statistical method. At the end of 120 days, there were steady increase in the rates of biodegradation of cellulose and bioplastic samples across the fourth month in both freshwater and marine water. However, the rate of biodegradation in marine water were higher than in freshwater following the trend cellulose in marine (342 %) > cellulose in freshwater (259%) > bioplastics packaging nylon in marine (193%) > bioplastics packaging nylon in freshwater (175%). For nylon 6, the rate (-14) of retardation in the biodegradation process in Nylon 6 soaked in marine water is greater than that of Nylon 6 soaked in freshwater (-13). Consequently, nylon 6 was recalcitrant to biodegradation both in freshwater and marine water. The study concluded that the blended bioplastic packaging nylon is a real biodegradable bioplastic and could be suggested as a feasible and environmentally-friendly option to replace traditional plastics in the society.


Main Subjects

Abdelmoez, W., Dahab, I., Ragab, E. M., Abdelsalam, O. A., & Mustafa, A. (2021). Bio- and oxo-degradable plastics: Insights on facts and challenges. Polym. Adv. Technol., 32(5); 1981-1996. Retrieved April 10, 2022, from
Abe, M., Branciforti, M. & Brienzo, M. (2021). Biodegradation of Hemicellulose-Cellulose-Starch Based Bioplastics and Microbial Polyesters. Recycl., 6(1); 10-22.  Retrieved February 25, 2023 from
Abed, R. M. Muthukrishnan, T., Al Khaburi, M., Al-Senafi, F., Munam, A., & Mahmoud, H. (2020). Degradability and biofouling of oxo-biodegradable polyethylene in the planktonic and benthic zones of the Arabian gulf. Mar. Pollut. Bull., 150(1); 110639. Retrieved February 25, 2023 from
    Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., & Muhammad, S. (2018). Biodegradation of plastics: Current scenario and future prospects for environmental safety. Enviro. Sci. and Poll. Res., 25 (8); 7287–7298. Retrieved March 12, 2022 from https://doi: 10.1007/s11356-018-1234-9.
Ariole, C. N. & George-West, O. (2020). Bioplastic Degradation Potential of Microorganisms Isolated from the Soil. Am. J. Chem. Biochem. Eng., 4(1); 1-7. Retrieved August 26, 2022 from https://doi:10.11648/J.AJCBE.20200401.11
ASTM D6691-17. (2017). ASTM International Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum.  ASTM Int., 8(2); 1-5.
Atanasova, N., Stoitsova, S., Paunova-Krasteva, T. & Kambourova, M. (2021). Review: Plastic Degradation by Extremophilic Bacteria. Int. J. of Mol. Sci., 22 (11); 5540-5610. https://doi:   HYPERLINK “” \t “_blank”  10.3390/ijms22115610 
Calabro, P. S., Folino, A., Fazzino, F. & Komilis, D. (2020). Preliminary evaluation of the anaerobic biodegradability of three biobased materials used for the production of disposable plastics. J.  of Hazard. Mater., 390(1); 121653. Retrieved November 10, 2022 from   HYPERLINK “” \t “_blank” \o “Persistent link using digital object identifier” .
Ciriminna, R. & Pagliaro, M. (2020). Biodegradable and Compostable Plastics: A Critical Perspective on the Dawn of their Global Adoption .  Open Chem., 9(1); 8–13. Retrieved August 21, 2022 from   HYPERLINK “” 
Dada, O. E. (2019). Cadmium Tolerance and Phytoremediation Strategies of Selected  Tropical plants Cultivated on Industrial Dump Site under the Influences of Two Mycobionts. West. Afr. J. of Appl. Ecol., 27(2); 106 –125. Retrieved February 20, 2020, from
Dada, O. E. (2020) Land-Based Plastic Pollution and Biocontrol in Developing   Countries: Issues, Challenges and Directions. [Electronic version]. J. of Eng. Res., 25(1); 1-10. Retrieved June  28, 2020, from
Demirkan, E., Guller, B. E., & Sevgi, T. (2020). Analysis by scanning electron microscopy of polyethylene terephthalate and nylon biodegradation abilities of Bacillus sp. strains isolated from soil. J. of Biol. and Environ. Sci., 14(42); 107–114.
Eronen-Rasimus, E. L., Pinja, P. N., & Kaartokallio, H. P. (2022). Degradation Rates and Bacterial Community Compositions Vary among Commonly Used Bioplastic Materials in a Brackish Marine Environment. Environ. Sci. and Technol., 56(22); 15760–15769. https://doi: 10.1021/acs.est.2c06280
European-Bioplastics. (2019). Report Bioplastics market data - Global production capacities of bioplastics 2019–2024. 1; 1-4. Retrieved December 09, 2022, from
Fesseha, H. & Abebe, F. (2019). Degradation of plastic materials using microorganisms: A Rev. Public Health Open J., 4(2); 57-63. https://doi: 10.17140/phoj-4-136
Ganesh, K. A., Anjana, K., Hinduja, M., Sujitha, K. & Dharani, G. (2020). Review on plastic wastes in marine environment–Biodegradation and biotechnological solutions. Mar. Poll. Bull. , 150 (10); 110733-110733. https://doi:  HYPERLINK “” \t “_blank”  10.1016/j.marpolbul.2019.110733 .
Guerrera, M. C., Aragona, M., Porcino, C., Fazio, F., Laurà, R., Levanti, M., Montalbano, G., Germanà, G., Abbate, F., & Germanà, A. (2021). Micro and nano plastics distribution in fish as model organisms: Histopathology, blood response and bioaccumulation in different organs. App. Sci., 11(13); 1–24.   HYPERLINK “” .
Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Ange. Chem. Int. Ed. Engl., 58(1); 50–62. https://doi: 10.1002/anie.201805766.
Harrison, J. P., Boardman, C., O’Callaghan, K., Delort, A. M. & Song, J. (2018). Biodegradability standards for carrier bags and plastic films in aquatic environments: A Critical Review. R. Soc. Open Sci. , 5(5); 1–18.   HYPERLINK “” .
Kjeldsen, A., Price, M., Lilley, C., Guzniczak, E., & Archer, I. (2019). A Review of Standards for Biodegradable Plastics. Ind. Biotechnol. Inn. Centre, 28 (1); 1-33. 
Lake Products Company LLC. (2021). Sea Salt ASTM D1141-98 (Re-approved 2013) Formula A, Technol. B., 1; 1-5.,sodium%20hydroxide%20or%20hydrochloric%20acid.
Mroczkowska, M., Culliton, D., Germaine, K. & Neves, A. (2021). Comparison of Mechanical and Physicochemical Characteristics of Potato Starch and Gelatine Blend Bioplastics Made with Gelatines from Different Sources. Clean Technol., 3(2); 424–436.
Muniyasamy, S. & John, M. J. (2017). Biodegradability of biobased polymeric materials in natural environments: Structures and Chemistry. (In: V. K. Thakur, M. K. Thakur, & M. R. Kessler (Eds.), Handbook of Composites from Renewable (pp. 625-653). New York: Wiley-Scrivener).
Muniyasamy, S. & Dada, O. E. (2021) Recycling of Plastics and Composites Materials and   Degradation Technologies for Bioplastics and Biocomposites. (In: R. Nayak and A. Patnaik (Eds.), Waste Management in Fashion and Textile Industry, (pp. 1311-3333). Cambridge: Woodhead Publishing).
Nomadolo, N., Dada, O. E., Swanepoel, A., Mokhena, T. & Sudhakar, M. (2022). A Comparative Study on the Aerobic Biodegradation of the Biopolymer Blends of Poly(butylene succinate), Poly(butylene adipate terephthalate) and Poly(lactic acid). Poly., 14(9); 1894.
Nwinyi, O. C. & Owolabi, T. A. (2019). Scanning electron microscopy and Fourier transmission analysis of polyhydroxyalkanoates isolated from bacteria species from abattoir in Ota, Nigeria. J. of King Saud Univ. Sci., 31(3); 285–298. https://doi:  HYPERLINK “,” \t “_blank”  10.1016/j.jksus.2017.08.003 .
Oliveira, M. M., Proenca, A. M., Moreira-Silva, E., de Castro, A. M., dos Santos, F. M., Marconatto, L. & Medina-Silva, R. (2021). Biofilms of Pseudomonas and Lysinibacillus Marine Strains on High-Density Polyethylene. Micro. and Ecol., 81(1); 833–846.
Ribba, L., Lopretti, M., Montes de Oca-Vásquez, G., Batista, D., Goyanes, S. & Vega-Baudrit, J. R.  (2022). Biodegradable plastics in aquatic ecosystems: Latest Findings, Research gaps, and Recommendations. Environ. Res. Lett. 17(3); 45-61.
Saalah, S., Saallah, S., Rajin, M. & Yaser, A. Z. (2020). Management of Biodegradable PlasticWaste: A Review. (In : A. Z. Y azer, (ed.). Advances in Waste Processing Technology. (pp.127-143)
Singapore: Springer Nature.). https://doi:  HYPERLINK “” \t “_blank”  10.1007/978-981-15-4821-5_8 .
Tourova, T., Sokolova, D., Nazina, T., Grouzdev, D., Kurshev, E., & Laptev, A. (2020). Biodiversity of Microorganisms Colonizing the Surface of Polystyrene Samples Exposed to Different Aqueous Environments. Sustain., 12(9); 3624. https://doi:  HYPERLINK “” \t “_blank”  10.3390/su12093624 
Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and greenbased antimicrobial packaging materials: a mini-review. Adv. Indust. Eng. Polym. Res., 3(1); 27-35. https://doi:  HYPERLINK “” \t “_blank”  10.1016/j.aiepr.2019.11.002 .