Analytical Methods for Extraction, Determination and Degradation of Diazinon in Soil Samples

Document Type : Review Paper

Authors

1 Department of Chemistry, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran

2 Department of Soil Science, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran

3 Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran

Abstract

Diazinon is an organophosphorus insecticide that was widely used in agriculture to control pests on crops. It acts as an acetylcholinesterase inhibitor, which means that it interferes with the normal functioning of the nervous system of insects, leading to their death. Diazinon can also have an impact on human health and the environment, as it can contaminate water and soil and pose a risk to non-target species, including humans and animals. This review paper shows the progress made in the last years in analytical methods applied for the purpose of extraction, detection and degradation of Diazinon as an important environmental pollutant. A variety of sampling and analytical methods have been developed to measure diazinon and its metabolites in different media. The most popular methods for the identification and analysis of Diazinon are liquid and gas chromatography, liquid-liquid extraction, and solid-phase extraction (SPE). The focus of this review is on the identification, measurement, and elimination of diazinon as a major soil pollutant. It begins with a discussion of analytical techniques, followed by an examination of methods for removing diazinon from soil.

Keywords

Main Subjects


Abd-Alla, M.H. (1994). Phosphodiesterase and phosphotriesterase in Rhizobium and Bradyrhizobium strains and their roles in the degradation of organophosphorus pesticides. Lett. Appl. Microbiol., 19, 240–243.
Abo-Amer, A. (2011). Biodegradation of diazinon by Serratiamarcescens DI101 and its use in bioremediation of contaminated environment. J. Microbiol. Biotechnol., 21, 71–80. 
Adebiyi, F.M., Ore, O.T., Adeola, A.O., Durodola, S.S., Akeremale, O.F., Olubodun, K.O., &  Akeremale, O.K. (2021). Occurrence and remediation of naturally occurring radioactive materials in Nigeria: a review. Environ. Chem. Lett., 19, 3243 - 3262.
Adeola, A.O. (2018). Fate and Toxicity of Chlorinated Phenols of Environmental Implications: A Review. Int. J. Anal. Chem., 2, 000126. Ore, O.T., Adeola, A.O. (2021). Toxic metals in oil sands: review of human health implications, environmental impact, and potential remediation using membrane-based approach. Energ. Ecol. Environ., 6, 81–91. 
Adeola, A.O., Abiodun, B.A., Adenuga, D.O., &  Nomngongo, P.N. (2022). Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review. J. Contam. Hydrol., 248, 104019. 
Adeola, A.O., Ore, O.T., & & Fapohunda, O. (2022). Psychotropic Drugs of Emerging Concerns in Aquatic Systems: Ecotoxicology and Remediation Approaches. Chemistry Africa., 5, 481–508. 
Adhya, T.K., Sudhakar, B., &  Sethunathan, N. (1981). Hydrolysis of selected organophosphorus insecticides by two bacteria isolated from flood soil. J. Appl. Microbiol., 50, 167–172.
Aggarwal V, Deng X, Tuli A, Goh KS. (2013) Diazinon-chemistry and environmental fate: a California perspective. Rev Environ ContamToxicol., 223, 107-40. 
Alegbeleye, O., Daramola, O.B., Adetunji, A.T., Ore, O.T., Ayantunji, Y.J., Omole, R.K., Ajagbe, D., &  Adekoya, S.O. (2022). Efficient removal of antibiotics from water resources is a public health priority: a critical assessment of the efficacy of some remediation strategies for antibiotics in water. Environ. Sci. Pollut. Res. Int., 29(38), 56948-57020. 
Alvarenga, N., Birolli, W.G., Seleghim, M.H.R., &  Porto, A.L.M. (2014). Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicilliumdecaturense. Chemosphere, 117, 47–52.
Ameta, R., Solanki, M. S., Benjamin, S., Ameta, S. C. Advanced Oxidation Processes for Waste Water Treatment, Chapter 6 - Photocatalysis, Academic Press, 2018, 135-175.
Aparicio, J.D., Raimondo, E.E., Saez, J.M., Costa-Gutierrez, S.B., Álvarez, A., Benimeli, C.S., Polti, M.A. (2022). The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination, J. Environ. Chem. Engin., 10(2).
Asensio-Ramos, M., Hernández-Borges, J., Borges-Miquel, T.M., &  Rodríguez-Delgado, M.A. Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestall soils. Anal. Chim. Acta., 647(2), 167-176.
Ashraf Dar, M.,  Hamid, B., &  Kaushik, G. (2023). Temporal trends in the use and concentration of organophosphorus pesticides in Indian riverine water, toxicity, and their risk assessment. Reg. Stud. Mar. Sci., 59.
Aswathi, A., Pandey, A., Sukumaran, R.K. (2019). Rapid degradation of the organophosphate pesticide – Chlorpyrifos by a novel strain of Pseudomonas nitroreducens. AR-3Bioresour. Technol., 292, 122025. 
Bagheri, H., Amanzadeh, H., Yamini, Y., Masoomi, M.Y., Morsali, A., Salar-Amoli, J., & Hassan, J. (2018). nanocomposite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides. Microchim. Acta., 185, 62.
Ban, S.E., Lee, E.J., Lim, D.J., Kim, I.S., &  Lee, J.W. (2022). Evaluation of sulfuric acid-pretreated biomass-derived biochar characteristics and its diazinon adsorption mechanism. Bioresour. Technol., 348, 126828.
Bavcon, M., Trebsˇe, P., & Zupancˇicˇ-Kralj, L. (2003). Investigations of the determinationand transformations of diazinon and malathion under environmental conditions using gas chromatography coupled with a flame ionisation detector. Chemosphere, 50, 595–601.
Bayode, A.A., Agunbiade, F.O., Omorogie, M.O., Moodley, R., Bodede, O., & Unuabonah, EI. (2020). Clean technology for synchronous sequestration of charged organic micro-pollutant onto microwave-assisted hybrid clay materials. Environ. Sci. Pollut. Res. Int., 27(9), 9957-9969.
Bazmi, E., Behnoush, B., Akhgari, M., & Bahmanabadi, L. (2016). Quantitative analysis of benzodiazepines in vitreous humor by high-performance liquid chromatography. SAGE Open Med., 4. 
Bhat, S.A., Bashir, O., UlHaq, S.A., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J.H.P., Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemospher, 303(Pt 1):134788. 
Bhatt, P., Bhatt, K., Huang, Y., Lin, Z., &  Chen, S. (2020). Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. Chemosphere, 244,125507. 
Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., &  Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit. Rev. Biotechnol., 41(3), 317-338. 
Briceño, G., Fuentes, M. S., Rubilar, O., Jorquera, M., Tortella, G., &  Palma, G. (2015). Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil: removal of insecticide diazinon from liquid residues. J. Basic. Microb., 55, 293–302.
Briceño, G., Schalchli, H., Mutis, A., Benimeli, C.S., Palma, G., Tortella, G.R., &  Diez, M.C. (2016). Use of pure and mixed culture of diazinon-degrading Streptomyces to remove other organophosphorus pesticides. Int. Biodeterior. Biodegrad., 114, 193–201. 
carbamate pesticides in aquatic environments. Environmental letters 3, 171–201.
Chambers, W.H. (1992). Organophosphorus compounds: an overview. In:Chambers, J.E., Levi, P.E. (Eds.), Organophosphates, Chemistry, Fate and Effects.Academic Press, San Diego,  3–17.
Cycoń, M., Wójcik, M., &  Piotrowska-Seget, Z. (2009) Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76, 494-501.
Dar, M.A., Kaushik, G.,&  Chiu,J.F.V. (2020). Pollution status and biodegradation of organophosphatepesticides in the environment. Environ. Sci., 25–66.
Dehghan Abkenar, S., Yamini, Y., Shemirani, F., &  Assadi, Y. (2008). Headspace solid phase microextraction using a porous-layer activated charcoal coating fused silica fiber for identification of volatile organic compounds emitted by Zataria. Chem. Anal., 53 (2), 277-287.
Dehghan Abkenar, S., Yamini, Y., Shemirani, F., &  Assadi, Y. (2008). Solid phase microextraction with gas chromatography–mass spectrometry: a very rapid method for identification of volatile organic compounds emitted by Carumcopticum. Nat. Prod. Res.,20(9),850-859.
Dehghan Abkenar, Sh., Hosseini, M., Esmaeili Gholzoom, H., &  Mehrdadi, N. (2014). Determination of organochlorine pesticides in river waters by GC-ECD after solid phase extraction, Mazandaran. J. Environ. Stud., 40(3), 765–773. 
Deng, S., Chen, Y., Wang, D., Shi, T., Wu, X., Ma, X., Li, X., Hua, R., Tang, X., &  Li, Q.X. (2015). Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp: G1. J. Hazard. Mater., 297, 17–24. 
Díaz-Cruz, M.S., &  Barceló, D. (2006). Highly selective sample preparation and gas chromatographic–mass spectrometric analysis of chlorpyrifos, diazinon and their major metabolites in sludge and sludge-fertilized agricultural soils, J. Chromatogr. A., 1132(1-2), 
Drufovka, K., Danevc ic, T., Trebs, P., Stopar, D. (2008). Microorganisms trigger chemical degradation of diazinonInt. Biodeterior. Biodegrad., 62(3), 293-296.
Ðurović-Pejčev, R.D., Bursić, V.P., & Zeremski, T.M. (2019). Comparison of QuEChERS with Traditional Sample Preparation Methods in the Determination of Multiclass Pesticides in Soil. J. AOAC. Int., 102(1).
Ehrampoush, M. H., Sadeghi, A., Ghaneian, M. T., &  Bonyadi, Z. (2017). Optimization of diazinon biodegradation from aqueous solutions by Saccharomyces cerevisiae using response surface methodology. AMB Express, 7, 68. 
El-Saeid, M.H., Al- Wabel, M.I., Abdel-Nasser, G., Al- Turki, A.M., &  Al- Ghamdi, A.G. (2010). One-step Extraction of Multiresidue Pesticides in Soil by Microwave-assisted Extraction Technique. J. Appl. Sci., 10, 1775-1780.
Fan, L., Ni, J., Wu,Y., &  Zhang,Y. (2009). Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter, J. Hazard. Mater., 162, (2), 1204-1210.
Faust, S.D., &  Gomaa, H.M. (1972). Chemical hydrolysis of some organic phosphorus and Forest, M., Lord, K.A., & Walker, N. (1981). The influence of soil treatments on the bacterial degradation of diazinon and other organophosphorus insecticides. Environ. Pollut. A, Ecol. Biol., 24(2), 93-104.
Forrest, M., Lord, K.A., Walker, N., Woodville, H.C., 1981. The influence of soil treatments on the bacterial degradation of diazinon and other organophosphorus insecticides. Environmental Pollution Series A 24, 93–104.
Fuentes, E., Báez, M.E., &  Labra, R. (2007). Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil. J. Chromatogr. A., 1169(12), 40-46.
Ghali, L., Zidi, M., &  Roudesli, S. (2006). Physical and Mechanical Characterization of Technical Esparto (Alfa) Fibres. J. Appl. Sci., 6(11), 2450-2455.
Gissawong, N., Mukdasai, S.,Boonchiangma, S., Sansuk, S., &  Srijaranai, S. (2020). A rapid and simple method for the removal of dyes and organophosphorus pesticides from water and soil samples using deep eutectic solvent embedded sponge. Chemosphere, 260, 12759.
Glinski, D.A., Purucker, S.T., Van Meter, R.J., Black, M.C., Henderson, W.M. (2018). Endogenous and exogenous biomarker analysis in terrestrial phase amphibians (Lithobates sphenocephala) following dermal exposure to pesticide mixtures. Environ. Chem., 28,16(1), 55-67. 
Gomaa, H.M., Suffet, I.H., &  Faust, S.D. (1969). Kinetics of hydrolysis of diazinon and diazoxon. Residuerev., 29, 171–190.
Goncalves, C., &  Alpendurada, M. (2005). Assessment of pesticide contamination in soil samples from an intensivehorticulture area, using ultrasonic extraction and gas chromatography–mass spectrometry. Talanta, 65(5), 1179–89.
Góngora-Echeverría, V. R., García-Escalante, R., Rojas-Herrera, R., Giácoman- Vallejos, G., &  Ponce-Caballero, C. (2020). Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. Ecotoxicol. Environ. Saf., 200, 110734.
Gunner, H.B., &  Zuckerman, B.M. (1968). Degradation of ‘diazinon’ by synergistic microbial action. Nature, 217, 1183–1184.
Hamad, M. T. M. H., 2020. Biodegradation of diazinon by fungal strain Apergillus niger MK640786 using response surface methodology. Environ. Technol. Innov. 18, 100691. 
Hassan shahian, M. (2016). Isolation and characterization of diazinon degrading bacteria from contaminated agriculture soils. Iran. J. Toxicol., 10, 13–20.
Hassan, A.F., Elhadidy, H., &  Abdel-Mohsen, A.M. (2017). Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons, J.TAIWAN INST. CHEM. E., 75, 299-306.
Hossaini, H., Moussavi, G., &  Farrokhi, M. (2014). The investigation of the LED-activated FeFNS-TiO2nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Res., 1(59), 130-44.
Hussaini, S. Z., Shaker, M., &  Iqbal, M. A. (2013). Isolation of bacterial for degradation of selected pesticides. Adv Biores., 4(3), 82-85. 
Karpouzas, D.G., &  Singh, B.K. (2006). Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis. Adv. Microb. Physiol, 51, 119–185.
Kendall, R. J., Brewer, L. W. &  Hitchcock, R. R. (1993). Response of Canada Geese to a turf application of diazinon AG500. J. Wildlife Dis., 29(3), 458-464.
Khudhur, N.S.,&  Sarmamy, A.O.I. (2019). Determination of diazinon residues in artificially polluted soils. ZJPAS., 31(5), 1-8.
Kreuzig, R., Koinecke,A., &  Bahadir, M. (2000). Use of supercritical fluid extraction in the analysis of pesticides in soil.J. Biochem. Biophys. Methods.,43 (1–3), 403–409.
Ku, Y., Chang, J.-L., Cheng, S.-C., 1998. Effect of solution pH on the hydrolysis and photolysis of diazinon in aqueous solution. Water, Air, and Soil Pollution 108,445–456.
Kumar, M., Yadav, A.N., Saxena, R., Paul, D., &  Tomar, R.S. (2021). Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal. Agric. Biotechnol., 31,101883.
Kumaran, S., &  Morita, M. (1995). Application of a cholinesterase biosensor to screen for organophosphorus pesticides extracted from soil, Talanta, 42(4), 649-655. 
Liu, H., Wang, C., &  Wang, G. (2020). Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem. Asian. J., 16;15(20), 3239-3253. 
Liu, T., Xu, S., Lu, S., Qin, P., Bi, B., Ding, H., Liu, Y., Guo, X., Liu, X., 2019. A review on removal of organophosphorus pesticides in constructed wetland performance, mechanism and influencing factors. Sci. Total Environ. 651, 2247–2268. 
Mahiudddin, M., Fakhruddin, A. N. M., Chowdhury, M., Rahman, M., &  Alam, M. (2014). Degradation of the organophosphorus insecticide diazinon by soil bacterial isolate. Int. J. Biotech., 7, 12–23.
Mansour, M., Feicht, E.A., Behechti, A., Schramm, K.W., &  Kettrup, A. (1999). Determination photostability of selected agrochemicals in water and soil. Chemosphere., 39, 575–585.
Masiá, A., Vásquez, K., Campo, J., & Picó, Y. (2015). Assessment of two extraction methods to determine pesticides in soils, sediments and sludges. Application to the Túria River Basin, J. Chromatogr. A., 1378, 19-31.
Meng, D., Jiang, W., Li, J., Huang, L., Zhai, L., &  Zhang, L. (2019). An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad spectrum organophosphorus pesticides. J. Environ. Sci. Health B., 54, 336–343. 
Mishra, S., Pang, S., Zhang, W., Lin, Z., Bhatt, P., &  Chen, S. (2021). Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere, 279, 130500.
Mohammadi Aria, M.,Jafari, M.T., Nourbakhsh, F.,Khajeali, J.(2022).Monitoring of Diazinon in Soil Samples by Ion Mobility Spectrometry,Communications in Soil Science and Plant Analysis,53:21,2907-2921.
Mostafa, A.A.F., Yassin, M.T.,Dawoud, T.M., Al-Otibi, F.O., Sayed,Sh.R.M. (2022). Mycodegradation of diazinon pesticide utilizing fungal strains isolated from polluted soil,Environ. Res., 212, Part C,113421.
Mulbry, W. W., &  Karns, J. S. (1989). Parathion hydrolase specified by the Flavobacteriumopd gene: relationship between the gene and protein. J. Bacteriol., 171, 6740–6746.
Nemati, F., Hosseini, M., Zare-Dorabei, R., &  Ganjali, M. R. (2018). Sensitive recognition of ethion in food samples using turn-on fluorescence N and S co-doped graphene quantum dots. Analytical Methods, 10(15), 1760-1766.
Ng, W., Teo, M., &  Lakso, H.Å. (1999). Determination of organophosphorus pesticides in soil by headspace solid-phase microextraction. Fresenius J. Anal. Chem., 363, 673–679.  
NPIC, National Pesticide Information Center. (2003). Diazinon technical fact sheet. Oregon State University. www.npic.orst.edu. npic@ace.orst.edu.
Ohshiro, K., Kakuta, T., Sakai, T., Hirota, H., Hoshino, T., &  Uchiyama, T. (1996). Biodegradation of organophosphorus insecticides by bacteria isolated from turf green soil. J. Biosci. Bioeng., 82, 299–305.
Omorogie, M., Agunbiade, F. O., Alfred, M. O., Olaniyi, O. T., Adewumi, T. A., Bayode, A. A., &  Unuabonah, E. I. (2018). The sequestral capture of fluoride, nitrate and phosphate by metal-doped and surfactant-modified hybrid clay materials. Chem. Pap., 72(2), pp. 409-417. 
Ore, O.T., Adeola, A.O., Bayode, A.A., Demilade, T., Adedipe,F., &  Philiswa, N. (2023). NomngongoOrganophosphate pesticide residues in environmental and biologicalmatrices: Occurrence, distribution and potential remedial approaches. J. Environ. Chem. Ecotoxicol., 5,9-23.
Pandit , P., &  Basu, S. (2004). Dye and Solvent Recovery in Solvent Extraction Using Reverse Micelles for the Removal of Ionic Dyes, Ind. Eng. Chem. Res., 43, 7861- 7864.
Pajooheshpour, N., Rezaei, M., Hajian, A., Afkhami, A., Sillanpää, M., Arduini, F., &  Bagheri, H. (2018). Protein templated Au-Pt nanoclusters-graphene nanoribbons as a high performance sensing layer for the electrochemical determination of diazinon, Sensors and Actuators B: Chemical, 275, 180-189.
Pourbabaee, A. A., Soleymani, S., Farahbakhsh, M., &  Torabi, E. (2018). Biodegradation of diazinon by the Stenotrophomonasmaltophilia PS: pesticide dissipation kinetics and breakdown characterization using FTIR. Int. J. Environ. Sci. Technol., 15, 1073–1084. 
Racke, K.D. (1992). Degradation of organophosphorus insecticides in environmental matrices. In: Chambers, J.E., Levi, P.E. (Eds.), Organophosphates, Chemistry, Fateand Effects. Academic Press, San Diego,  47–73.
Rahmani, S., &  Aibaghi, B. (2022). Application of ZnS/S/S-RGO three-component nanocomposites in dispersive solid-phase microextraction coupled with ion mobility spectrometry for ultra-trace determination of multiclass pesticides. Microchimica Acta, 189(1), 9.
Rashid, A., Nawaz,S., Barker,H., Ahmad,I.,&  Ashraf., M. (2010). Development of a simple extraction and clean-upprocedure for determination of organochlorine pesticides in soil using gas chromatography–tandem mass spectrometry.J. Chromatogr. A., 1217(17), 2933–39. 
Richter, P., Sepúlveda, B., Oliva, R.,Calderón, K., & Seguel, R. (2003). Screening and determination of pesticides in soil using continuous subcritical water extraction and gas chromatography–mass spectrometr. J. Chromatogr. A., 994, 169-177.
Salama, Gh., El Gindy, A., &  Abdel Hameed, E.A.(2022).The use of experimental design for optimisation of QuEChERS extraction of commonly used pesticides in Egyptian soil and drainage water and their determination by GC/MS. J. Environ. Anal. Chem., 102(16), 4238-4249.
Sanchez, M.E., Estrada, I.B., Martinez, O., Martin-Villacorta, J., Aller, A., &  Moran, A. (2004). Influence of the application of sewage sludge on the degradation of pesticides in the soil. Chemosphere, 57, 673–679.
Saraji, M., Rezaei,B., Boroujeni,M. K.,&  Bidgoli, A. A. H. (2013). Polypyrrole/sol–gel composite as a solid-phasemicroextraction fiber coating for the determination of organophosphorus pesticides in water and vegetable samples. J. Chromatogr. A., 1279, 20–26.
Seo, J. S., Keum, Y. S., Harada, R. M., &  Li, Q. X. (2007). Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH contaminated soil in Hilo. J. Agric. Food Chem., 55, 5383–5389.
Sethunathan, N., &  Yoshida, T. (1969). Fate of diazinon in submerged soil. Accumulationof hydrolysis product. J. Agric. Food Chem., 17, 1192–1195.
Sethunathan, N., &  Yoshida, T. (1973). A Flavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol., 19, 873–875.
Singh, B., Walker, A., Morgan, J., &  Wright, D. (2004). Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl. Environ. Microbiol., 70, 4855–4863. 
Singh, B.K., Kuhad, R.C., Singh, A., Lal, R., & Tripathi, K.K. (1999). Biochemical and molecular basis of pesticide degradation by microorganisms. Crit. Rev. Biotechnol., 19, 197–225.
Shabbir, M., Singh, M., Maiti, S., Kumar, S., Saha, S.K. (2018). Removal enactment of organo-phosphorous pesticide using bacteria isolated from domest sewage. Bioresour. Technol, 263, 280–288. 
Anastassiades, M., Lehotay, S.J., Štajnbaher, D., &  Schenck, F.J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce, J. AOAC Int. 86, 412–431.
Tang, J., Zhang, M., Cheng, G., &  Lu, Y. (2009). Diazinon Determination Using High Performance LiquidChromatography: A Comparison of the ENVI-Carb Column with the Immunoaffinity Column for the Pretreatment of Water and Soil Samples. Bull. Environ. Contam. Toxicol., 83, 626–629.
Tian, J., Dong, Q., Yu, C., Zhao, R., Wang, J., &  Chen, L. (2016). Biodegradation of the organophosphate trichlorfon and its major degradation products by a novel Aspergillus sydowii PA F-2. J. Agric. Food Chem., 64, 4280–4287.
Verma, J.P., Jaiswal, D.K., Sagar, R., 2014. Pesticide relevance and their microbial degradation: a-state-of-art. Rev. Environ. Sci. Biotechnol, 13, 429–466.
Wang, G., &  Liu, Y. (2016). Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon. J. Biosci., 41, 359–366.
Wu, X., Li, J., Zhou, Z., Lin, Z., Pang, S., Bhatt, P., Mishra, S., &  Chen, S. (2021). Environmental Occurrence, Toxicity Concerns, and Degradation of Diazinon Using a Microbial System. Front Microbiol., 12, 717286. 
Zhang, Y., Zhang, W., Li, J., Pang, S., Mishra, S., Bhatt, P., Zeng, D., &  Chen, S. (2021). Emerging Technologies for Degradation of Dichlorvos: A Review. Int. J. Environ. Res. Public Health., 28, 18(11):5789. 
Zhao, M.A., Gu, H., Zhang, C.J., Jeong, I.H., Kim, J.H., Zhu, Y.Z., 2020. Metabolism of insecticide diazinon by Cunninghamellaelegans ATCC36112. RSCAdv. 10, 19659–19668.