Effect of Auto Road on Spatial Metal Distribution in Dust and Snow Cover

Document Type : Original Research Paper


1 Peoples Friendship University of Russia (RUDN University), Institute of Environmental Engineering, 6 Miklukho-Maklaya Street, Moscow, 117198, Russia

2 V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7, 119017 Moscow, Russia


The present investigation examined the impact of highways on the global dispersion patterns of metallic elements present in dust and snow. A total of 18 mixed snow samples were collected from both sides of the Moscow-Tambo-Astrakhan Caspian Highway by the end of the winter season. The analysis of the samples indicated the presence of 35 distinct chemical elements, where Al, Ba, Ca, Fe, K, Mg, Na, and Zn were identified as the primary contaminants. The primary area of pollution on the windward side originating from the road spans a distance of 20-40 meters, while on the leeward side, it extends to 10 meters. The data presented suggests that the metals found in highways exhibited variability in terms of their solubility in water and concentration. Our findings demonstrate that the predominant wind directions affect the dispersion of pollutants. Furthermore, it was observed that the region with a higher concentration of metal on the side of the road facing the wind had a thickness that was 2-3 times less than that of the opposite side. It is advisable to conduct a subsequent inquiry within the ensuing five years to obtain dependable data regarding the extent of metal pollution.


Main Subjects

Aguilar, Y., Bautista, F., Quintana, P., Aguilar, D., Trejo-Tzab, R., Goguitchaichvili, A., & Chan-Te, R. (2021). Color as a new proxy technique for the identification of road dust samples contaminated with potentially toxic elements: The case of Mérida, Yucatán, México. Atmosphere, 12(4), 483. doi:10.3390/atmos12040483
Al-Jashami, S. H., & Khudair, Z. H. (2022). Continental climate and its relationship to dusty phenomena and health effects in Iraq. International Journal of Health Sciences (IJHS), 11608–11621. doi:10.53730/ijhs.v6ns4.11677
Alshetty, D., & Nagendra, S. (2022). Urban characteristics and its influence on resuspension of road dust, air quality and exposure. Air Quality, Atmosphere, & Health, 15(2), 273–287. doi:10.1007/s11869-021-01102-x
Chang, Z., Qiu, J., Wang, K., Liu, X., Fan, L., Liu, X., … & Zhang, Y. (2023). The relationship between co-exposure to multiple heavy metals and liver damage. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 77(127128), 127128. doi:10.1016/j.jtemb.2023.127128
Cheng, Y., Yu, H., Xie, S., Zhao, J., & Ye, Y. (2023). Study on the coal dust deposition fraction and site in the upper respiratory tract under different particle sizes and labor intensities. The Science of the Total Environment, 868(161617), 161617. doi:10.1016/j.scitotenv.2023.161617
Dimitropoulou, E., Hendrick, F., Friedrich, M. M., Tack, F., Pinardi, G., Merlaud, A., …& Van Roozendael, M. (2022). Horizontal distribution of tropospheric NO2 and aerosols derived by dual-scan multi-wavelength multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Belgium. Atmospheric Measurement Techniques, 15(15), 4503–4529. doi:10.5194/amt-15-4503-2022
Dytłow, S., & Górka-Kostrubiec, B. (2021). Concentration of heavy metals in street dust: an implication of using different geochemical background data in estimating the level of heavy metal pollution. Environmental Geochemistry and Health, 43(1), 521–535. doi:10.1007/s10653-020-00726-9
Forastiere, F., Lurmann, F., Boogaard, H., & Hei Panel On The Health Effects Of Long-term Exposure To Traffic-related Air Pollution. (2021). Knowledge on adverse effects of traffic-related air pollution: have we filled the gap? What more do we need to know? Environmental Health Perspectives, 2021(1). doi:10.1289/isee.2021.o-sy-004
Gonçalves, C., Rienda, I. C., Pina, N., Gama, C., Nunes, T., Tchepel, O., & Alves, C. (2021). PM10-bound sugars: Chemical composition, sources and seasonal variations. Atmosphere, 12(2), 194. doi:10.3390/atmos12020194
Han, G., Liu, M., Li, X., & Zhang, Q. (2023). Sources and geochemical behaviors of rare earth elements in suspended particulate matter in a wet-dry tropical river. Environmental Research, 218(115044), 115044. doi:10.1016/j.envres.2022.115044
Hernández-Terrones, L., Ayala-Godoy, J. A., Guerrero, E., Varelas-Hernández, G. H., Sánchez-Toriz, D. G., Flores-Moreno, M. F., & Pech-Perera, C. B. (2021). Composition and spatial distribution of metals and sulfur in urban roadside dust in Cancun, Mexico. Environmental Forensics, 22(3–4), 351–363. doi:10.1080/15275922.2020.1850556
Hill, D. T., Jandev, V., Petroni, M., Atallah-Yunes, N., Bendinskas, K., Brann, L. S., …& Collins, M. B. (2023). Airborne levels of cadmium are correlated with urinary cadmium concentrations among young children living in the New York state city of Syracuse, USA. Environmental Research, 223(115450), 115450. doi:10.1016/j.envres.2023.115450
Huo, C.Y., Li, W.-L., Liu, L.-Y., Sun, Y., Guo, J.-Q., Wang, L., … & Li, Y. F. (2023). Seasonal variations of airborne phthalates and novel non-phthalate plasticizers in a test residence in cold regions: Effects of temperature, humidity, total suspended particulate matter, and sources. The Science of the Total Environment, 863(160852), 160852. doi:10.1016/j.scitotenv.2022.160852
Islam, N., Toha, T. R., Islam, M. M., & Ahmed, T. (2023). Spatio-temporal variation of meteorological influence on PM2.5 and PM10 over major urban cities of Bangladesh. Aerosol and Air Quality Research, 23(1), 220082. doi:10.4209/aaqr.220082
Jalali, M., Farahani, E. A., & Jalali, M. (2022). Simulating phosphorus leaching from two agricultural soils as affected by different rates of phosphorus application based on the geochemical model PHREEQC. Environmental Monitoring and Assessment, 194(3), 164. doi:10.1007/s10661-022-09828-6
Jasim, S. A., Mohammadi, M. J., Patra, I., Jalil, A. T., Taherian, M., Abdullaeva, U. Y., … & Alborzi, M. (2022). The effect of microorganisms (bacteria and fungi) in dust storm on human health. Reviews on Environmental Health, 0(0). doi:10.1515/reveh-2022-0162
Khdre, A. M., Ramadan, S. A., Ashry, A., & Alaraby, M. (2023). Chironomus sp. As a bioindicator for assessing microplastic contamination and the heavy metals associated with it in the sediment of wastewater in Sohag Governorate, Egypt. Water, Air, and Soil Pollution, 234(3), 161. doi:10.1007/s11270-023-06179-x
Kirilina, N. A. (2022). Changes in transport behaviour and road traffic injuries in Moscow during the covid-19 crisis. Transportation Research Procedia, 60, 520–527. doi:10.1016/j.trpro.2021.12.067
Koju, N. K., Sherpa, C. D., & Koju, N. P. (2022). Assessment of physico-chemical parameters along with the concentration of heavy metals in the effluents released from different industries in Kathmandu valley. Water, Air, and Soil Pollution, 233(5). doi:10.1007/s11270-022-05645-2
Korzeniowska, J. (2022). Heavy metal content in the soil along the Road No. 7 near chyżne. Atmosphere, 14(1), 2. doi:10.3390/atmos14010002
Krasovitov, B., Fominykh, A., Levy, A., Kleeorin, N., & Katra, I. (2021). Dry deposition of dust particles during medium- and high-level dust storms to a forest canopy in a semi-arid region. Atmospheric Pollution Research, 12(5), 101058. doi:10.1016/j.apr.2021.101058
Le Vern, M., Razakamanantsoa, A., Murzyn, F., Larrarte, F., & Cerezo, V. (2022). Effects of soil surface degradation and vehicle momentum on dust emissions and visibility reduction from unpaved roads. Transportation Geotechnics, 37(100842), 100842. doi:10.1016/j.trgeo.2022.100842
Liu, Q., Li, X., & He, L. (2022). Health risk assessment of heavy metals in soils and food crops from a coexist area of heavily industrialized and intensively cropping in the Chengdu Plain, Sichuan, China. Frontiers in Chemistry, 10, 988587. doi:10.3389/fchem.2022.988587
Liu, Y., Jin, T., Yu, S., & Chu, H. (2023). Pollution characteristics and health risks of heavy metals in road dust in Ma’anshan, China. Environmental Science and Pollution Research International, 30(15), 43726–43739. doi:10.1007/s11356-023-25303-2
Mabood, F., Hadi, F., Jan, A. U., Ditta, A., Islam, Z., Siddiqui, M. H., … & Sabagh, A. E. L. (2021). Assessment of heavy metals and potential health risks associated with the consumption of vegetables grown on the roadside soils. doi:10.21203/rs.3.rs-1115842/v1
Onishi, K., Nojima, M., Sekiyama, T. T., Kurosaki, Y., Maki, T., Kurozawa, Y., & Yamagata, Z. (2022). Prediction of health effects of Asian dust in Japan. Environmental Health Perspectives, 2022(1). doi:10.1289/isee.2022.p-0238
Oyewumi, O., Cavanaugh, C., Guzzardi, D., & Costa, M. (2022). Geochemical assessment of trace element concentrations in the Farmington River, Connecticut, Northeastern, USA. Environmental Monitoring and Assessment, 194(5), 345. doi:10.1007/s10661-022-10013-y
PAHO/WHO (2011). Health situation in the Americas. Basic Indicators (4th ed). WHO Press. Pan American Health Organization, Washington, DC 20037, USA
Pospelov, P. I., Moscow Automobile and Road Construction State Technical University (MADI), Tatashev, A. G., Terentyev, A. V., Karelina, M. Y., Yashina, M. V., … & Moscow Automobile and Road Construction State Technical University (MADI). (2021). Bartlett flows and mathematical description of motor traffic flows. H&ES Research, 13(6), 34–41. doi:10.36724/2409-5419-2021-13-6-34-41
Pozhitkov, R. Y., Tigeev, A. A., & Moskovchenko, D. V. (2021). Estimation of dust depositions in snow cover using earth’s remote sensing data: Example of nizhnevartovsk. Atmospheric and Oceanic Optics, 34(1), 19–25. doi:10.1134/s1024856021010103
Rocha, F., Alves, A., & Homem, V. (2022). Exploring the potential of sewage sludge as agricultural fertilizer: Determination of heavy metals and nutrients by microwave-assisted digestion followed by ICP-OES analysis. Journal of Chemical Education, 99(9), 3218–3226. doi:10.1021/acs.jchemed.2c00044
Sarhan, M., Abd Elhafeez, A., & Bashandy, S. (2021). Evaluation of heavy metals concentration in soil and plants as affected by vehicular emission in alluvial soil at middle Egypt conditions. Egyptian Journal of Soil Science, 0(0), 0–0. doi:10.21608/ejss.2021.89288.1460
Shirakawa, T., Ozeki, T., Kaneda, Y., & Matsuoka, N. (2022). Characteristics of snowfall and snow cover in Iwamizawa, Hokkaido, Japan, during 2020/21 winter season. Journal of the Japanese Society of Snow and Ice, 84(4), 341–358. doi:10.5331/seppyo.84.4_341
Sidorenkov, N. S., & Hydrometeorological Research Center of Russian Federation, Moscow, Russia. (2021). On the problem of interrelation between extreme lunisolar tides in 2021 and weather change. Hydrometeorological Research and Forecasting, 157–162. doi:10.37162/2618-9631-2021-1-157-162
Sun, J., Zhou, G., Gao, D., Wei, Z., & Wang, N. (2020). Preparation and performance characterization of a composite dust suppressant for preventing secondary dust in underground mine roadways. Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers, 156, 195–208. doi:10.1016/j.cherd.2020.01.030
Suvetha, M., Charles, P. E., Vinothkannan, A., Rajaram, R., Paray, B. A., & Ali, S. (2022). Are we at risk because of road dust? An ecological and health risk assessment of heavy metals in a rapid growing city in South India. Environmental Advances, 7(100165), 100165. doi:10.1016/j.envadv.2022.100165
Švédová, B., Matýsek, D., Raclavská, H., Kucbel, M., Kantor, P., Šafář, M., & Raclavský, K. (2020). Variation of the chemical composition of street dust in a highly industrialized city in the interval of ten years. Journal of Environmental Management, 267(110506), 110506. doi:10.1016/j.jenvman.2020.110506
Tang, C., Zhang, Y., Zhou, Z., Yang, G., Jiang, H., Huang, Z., … & Gao, Y. (2023). The effects of particle size polydispersity and median diameter on the diffusion characteristics of aluminum dust. Powder Technology, 425(118570), 118570. doi:10.1016/j.powtec.2023.118570
Vasil’ev, E. V., & Hydrometeorological Research Center of Russian Federation, Moscow, Russia. (2021). International competency requirements for public weather forecasters /. Hydrometeorological Research and Forecasting, 3, 161–171. doi:10.37162/2618-9631-2021-3-161-171
Vlasov, D. V., Vasil’chuk, J. Y., Kosheleva, N. E., & Kasimov, N. S. (2023). Contamination levels and source apportionment of potentially toxic elements in size-fractionated road dust of Moscow. Environmental Science and Pollution Research International, 30(13), 38099–38120. doi:10.1007/s11356-022-24934-1
Voronova, Ye., & Karpenko, O. (2010). Method for assessing the impact of a highway on the state of the elementospheric air of the roadside space // Bulletin of the Kharkiv National Automobile and Road University, 2010. No. 48.pp. 19-21.
Xu-Yang, Y., Dessert, C., & Losno, R. (2022). Atmospheric deposition over the Caribbean region: Sea salt and Saharan dust are sources of essential elements on the Island of Guadeloupe. Journal of Geophysical Research Atmospheres, 127(22). doi:10.1029/2022jd037175
Yao, W., Gui, K., Zheng, Y., Li, L., Wang, Y., Che, H., & Zhang, X. (2023). Seasonal cycles and long-term trends of arctic tropospheric aerosols based on CALIPSO lidar observations. Environmental Research, 216(Pt 2), 114613. doi:10.1016/j.envres.2022.114613
Yu, X., Zhao, Y., Feng, Y., Hu, X., Liu, J., Wang, X., …& Tian, F. (2022). Synthesis and performance characterization of a road coal dust suppressant with excellent consolidation, adhesion, and weather resistance. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 639(128334), 128334. doi:10.1016/j.colsurfa.2022.128334
Zhou, G., Jing, B., Meng, Q., Liu, Y., Yang, W., & Sun, B. (2023). Study on coupling diffusion of composite dust and cloud-mist dedust technology in fully mechanized driving face of mixed coal-rock roadway. Advanced Powder Technology: The International Journal of the Society of Powder Technology, Japan, 34(1), 103911. doi:10.1016/j.apt.2022.103911
Zong, Y., Xiao, Q., Malik, Z., & Lu, S. (2023). Exploring environment pollution and risk assessment of heavy metals in road dusts from a typical steel-Industrial City (Anshan), northeastern China. Water, Air, and Soil Pollution, 234(1). doi:10.1007/s11270-022-06042-5