Feasibility of Production of PET/ZIF-8 Polymer Media to Remove Particles from the Air Stream Compared to HEPA Filter

Document Type : Original Research Paper


1 Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

2 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

3 Department of Statistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran


Polyethylene terephthalate (PET) and Zeolitic Imidazolate Framework-8 (ZIF-8) were used to investigate the feasibility of producing electrospun PET/ZIF-8 polymer media in removing particles from the air stream to compare with the HEPA filter. To make PET/ZIF-8 media, concentrations of 0.5, 1, 2.5, and 5 wt.% of ZIF-8 were dissolved in PET20% solutions, and dispersed for 10 min. Then, PET/ZIF-8 media was produced with an ESDP30 model electrospinning device. The efficiency and pressure drop of nanofiber media were measured with a respiratory mask and filter test device. The FTIR, XRD and SEM analysis were carried out to obtain the characteristics of nanofibers. The overall XRD pattern and its peaks were in reasonable agreement with previous findings that confirmed the structure of ZIF-8. The FTIR spectra of the obtained materials confirm that the chemical bond structure corresponds to that reported for ZIF-8. In total, The PET/ZIF-8(1%) media efficiency, pressure drop, the average diameter of nanofibers, and the quality factor were 100%, 320 Pa, 171.18±37.91 nm and 0.0143 Pa-1, respectively, which was better than other electrospun PET/ZIF-8 media and HEPA filters. According to the results, with an increase in the weight percentage of Zif-8 (>5 wt.%) in the structure of PET/Zif-8 media, due to the increase in the viscosity of the solution jet, the diameter of the produced nanofibers increased and the efficiency of the electrospinning medium decreased.


Main Subjects

Abdelhamid, H. N., & Mathew, A. P. (2022). Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coordination Chemistry Reviews, 451, 214263.‏
Andersson, R. L., A. Martínez-Abad, J. M. Lagaron, U. W. Gedde, P. E. Mallon, R. T. Olsson, and Hedenqvist, M. S. (2014). ‘Antibacterial properties of tough and strong electrospun PMMA/PEO fiber mats filled with Lanasol--a naturally occurring brominated substance’, Int J Mol Sci, 15: 15912-23. 
Bahmani, E., Koushkbaghi, S., Darabi, M., ZabihiSahebi, A., Askari, A., & Irani, M. (2019). Fabrication of novel chitosan-g-PNVCL/ZIF-8 composite nanofibers for adsorption of Cr (VI), As (V) and phenol in a single and ternary systems. Carbohydrate polymers, 224, 115148. 
Bonfim, D.P., Cruz, F.G., Guerra, V.G., & Aguiar, M.L. (2021). Development of filter media by electrospinning for air filtration of nanoparticles from PET bottles. Membranes, 11(4), 293. 
Çavuş, F. K., Beken, M. & Özcanlı, Y. (2016). An Sem Study of Pp/Pet Blends. Journal of Engineering Technology and Applied Sciences, 1 (3), 127-131. 
Chazelet, S., Bemer, D., & Grippari, F., 2011. Effect of the test aerosol charge on the penetration through electret filter. Separation and purification technology, 79(3), 352-356. 
Chen, P., He, M., Chen, B., & Hu, B. (2020). Size-and dose-dependent cytotoxicity of ZIF-8 based on single cell analysis. Ecotoxicology and Environmental Safety, 205, 111110.‏
Chotigawin, R., Sribenjalux, P., Supothina, S., Johns, J., Charerntanyarak, L., & Chuaybamroong, P. (2010). Airborne microorganism disinfection by photocatalytic HEPA filter. EnvironmentAsia, 3(2), 1-7. 
Choudhary, K., Sangwan, K.S., & Goyal, D. (2019). Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Procedia CIRP, 80, 422-427. 
Dehghan, S.F., Golbabaei, F., Maddah, B., Yarahmadi, R., & Zadeh, A.S. (2016). Fabrication and optimization of electrospun polyacrylonitrile nanofiber for application in air filtration. Iran Occupational Health, 13(5), 11-23. 
Farhang Dehghan, S., Maddah, B., & Golbabaei, F. (2016). The development of nanofibrous media filter containing nanoparticles for removing particles from air stream. Iranian Journal of Health and Environment, 8(4), 509-524. 
García-Palacín, M., J. I. Martínez, L. Paseta, A. Deacon, T. Johnson, M. Malankowska, C. Téllez, and J. Coronas. (2020). ‘Sized-Controlled ZIF-8 Nanoparticle Synthesis from Recycled Mother Liquors: Environmental Impact Assessment’, ACS Sustain Chem Eng, 8: 2973-80. 
Guan, X., Li, Q., Maimaiti, T., Lan, S., Ouyang, P., Ouyang, B., Wu, X., & Yang, S.T. (2021). Toxicity and photosynthetic inhibition of metal-organic framework MOF-199 to pea seedlings. Journal of Hazardous Materials, 409, 124521.
Guo, J., Hanif, A., Shang, J., Deka, B. J., Zhi, N., & An, A. K. (2021). PAA@ ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2. 5 capture. Chemical Engineering Journal, 405, 126584.
He, R.W., Li, Y.Z., Xiang, P., Li, C., Cui, X.Y., & Ma, L.Q. (2018). Impact of particle size on distribution and human exposure of flame retardants in indoor dust. Environmental research, 162, 166-172. 
Huang, S.H., Chen, C.W., Kuo, Y.M., Lai, C.Y., McKay, R., & Chen, C.C. (2013). Factors affecting filter penetration and quality factor of particulate respirators. Aerosol and Air Quality Research, 13(1), 162-171. 
Jiang, X., Li, S., He, S., Bai, Y., Shao, L. (2018). Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J. Mater. Chem. A, 6, 15064−15073. 
Kazemi, M., Kalantari, S., Abbasi, A., Foroushani, A. R., Mowlavi, H., Montazemi, A. H., & Golbabaei, F. (2023). Fabrication of PET Nanofibers Media by Electrospinning Method and Determining its Efficiency in Removing Submicron and Micron Particle Contaminants from Air. Journal of Health and Safety at Work, 13(1), 44-59.‏
Khorram, M., Mousavi, A., & Mehranbod, N. (2017). Chromium removal using adsorptive membranes composed of electrospun plasma-treated functionalized polyethylene terephthalate (PET) with chitosan. Journal of environmental chemical engineering, 5(3), 2366-2377. 
Kohsari, I., Shariatinia, Z., & Pourmortazavi, S.M. (2016). Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. International journal of biological macromolecules, 91, 778-788.
Lai, Q., Zhao, Y., Liang, Y., He, J., and Chen, J. (2016). In Situ Confinement Pyrolysis Transformation of ZIF-8 to Nitrogen-Enriched Meso-Microporous Carbon Frameworks for Oxygen Reduction. Adv. Funct. Mater. 26, 8334–8344. 
Li, J., Gao, F., Liu, L.Q., & Zhang, Z. (2013). Needleless electro-spun nanofibers used for filtration of small particles. Express Polymer Letters, 7(8), 683–689.
Li, T.-T., Cen, X., Ren, H.-T., Wu, L., Peng, H.-K., Wang, W., et al. (2020). Zeolitic Imidazolate Framework-8/Polypropylene-Polycarbonate Barklike Meltblown Fibrous Membranes by a Facile In Situ Growth Method for Efficient PM2.5 Capture. ACS Appl. Mater. Inter. 12, 8730–8739. 
Li, Y., Wang, D., Xu, G., Qiao, L., Li, Y., Gong, H., Shi, L., Li, D., Gao, M., Liu, G., & Zhang, J. (2021). ZIF-8/PI nanofibrous membranes with high-temperature resistance for highly efficient PM0. 3 air filtration and oil-water separation. Frontiers in Chemistry, 9, 1116.
Liu, F., Xiong, W., Feng, X., Shi, L., Chen, D., & Zhang, Y. (2019). A novel monolith ZnS-ZIF-8 adsorption material for ultraeffective Hg (II) capture from wastewater. Journal of hazardous materials, 367, 381-389. 
Morillo Martín, D., Magdi Ahmed, M., Rodríguez, M., García, M.A., & Faccini, M. (2017). Aminated polyethylene terephthalate (PET) nanofibers for the selective removal of Pb (II) from polluted water. Materials, 10(12), 1352. 
Mousavi, T., Golbabaei, F., Pourmand, M.R., Rezaei, S., Hosseini, M., Helmi Kohneshahri, M., Masoorian, E., & Karimi, A. (2017). Evaluating the efficiency of UVC radiation on HEPA filters to remove airborne microorganisms. Journal of Health and Safety at Work, 7(2), 111-120. 
Rebai, M., Prat, M., Meireles, M., Schmitz, P., & Baclet, R. (2010). Clogging modeling in pleated filters for gas filtration. Chemical Engineering Research and Design, 88(4), 476-486.
Reyhaneh Shams, S., Jahani, A., Moeinaddini, M., Khorasani, N., & Kalantary, S. (2020). Forecasting Ozone Density in Tehran Air Using a Smart Data-Driven Approach. Journal of Health and Safety at Work, 10(4), 406-420. 
Saghir, Summaira, and Zhenggang Xiao. (2021). ‘Facile preparation of metal-organic frameworks-8 (ZIF-8) and its simultaneous adsorption of tetracycline (TC) and minocycline (MC) from aqueous solutions’, Materials Research Bulletin, 141: 111372. 
Salatin, P., & Eslambolchi, S. (2016). Examining Effect of Air Pollution on Health Expenditure in Selected Countries. Journal of Environmental Science and Technology, 18(1), 107-121. 
Strain, I.N., Wu, Q., Pourrahimi, A.M., Hedenqvist, M.S., Olsson, R.T., & Andersson, R.L. (2015). Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. Journal of Materials Chemistry A, 3(4), 1632-1640. 
Yang, C., Wen, J., Xue, Z., Yin, X., Li, Y., & Yuan, L. (2023). The accumulation and toxicity of ZIF-8 nanoparticles in Corbicula fluminea. Journal of Environmental Sciences, 127, 91-101.‏
Zeng, Y., Cao, Y., Qiao, X., Seyler, B. C., & Tang, Y. (2019). Air pollution reduction in China: Recent success but great challenge for the future. Science of the Total Environment, 663, 329-337. 
Zhang, Y., & Jia, Y. (2018). Synthesis of zeolitic imidazolate framework-8 on polyester fiber for PM 2.5 removal. RSC advances, 8(55), 31471-31477.
Zhou, Y., Liu, Y., Zhang, M., Feng, Z., Yu, D.G., & Wang, K. (2022). Electrospun nanofiber membranes for air filtration: A review. Nanomaterials, 12(7), p.1077.