Dust Emission Calculation and Forecasting using CALPUFF and GCM models

Document Type : Original Research Paper

Authors

1 Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 School of Mechanical Engineering, Sharif University of Technology

3 Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran

10.22059/poll.2023.355804.1831

Abstract

Dust is an important atmospheric phenomena that occurs in spring and summer in many regions, including Iran and its neighboring countries. Considered one of the most important challenges of the last century, this phenomenon occurs on a global scale in arid and semi-arid regions. Because of changes in climate and vegetation as well as progressive processes of soil erosion and the disturbances resulting from them, the sensitivity of regions to rapid erosion will have important reactions on the region's climate and desertification. Therefore, the current research investigated the concentration and distribution of fine dust under the influence of meteorological parameters using the GCM climate model and attempted to determine the effect of climate change on the concentration of the relevant pollutant in the coming years. In this study, the CALPUFF model considered the temporal and spatial effects of weather conditions on the transfer, transformation, and removal of atmospheric pollutants. The emission rate of the PM10 pollutant was estimated. The results indicated that the increase in greenhouse gas emissions and changes in climate variables in the near future will cause the distribution of suspended particles one of the important pollutants to increase significantly. The results also revealed a significant relationship between the degradation of air quality and the trend of air warming during the period 2046-2065.

Keywords

Main Subjects


Alizadeh-Choobari, O., Ghafarian, P., & Owlad, E. ( 2016). Temporal variations in the frequency and concentration of dust events over Iran based on surface observations. Int. J. Climatol. 36, 2050–2062. 10.1002/joc.4479.
Ashrafi, K., Shafiepour-Motlagh, M., Aslemand, A.,  & Ghader, S. (2014). Dust storm simulation over Iran using HYSPLIT. J. Environ. Heal. Sci. Eng. 12, 9. 
Azuma, K., Kagi, N., Kim, H., & Hayashi, M. (2020). Impact of climate and ambient air pollution on the epidemic growth during COVID-19 outbreak in Japan. Environ. Res. 190, 110042. 
Baghbanan, P., Ghavidel, Y., & Farajzadeh, M. ( 2020). Temporal long-term variations in the occurrence of dust storm days in Iran. Meteorol. Atmos. Phys. 00703-020-00728-3.
Bart, O., Aurelio, T., Xavier, Q., Andrés, A., Fulvio, A., Jorge, P., Noemí, P., & Jordi, S.  (2011). The Effects of Particulate Matter Sources on Daily Mortality: A Case-Crossover Study of Barcelona, Spain. Environ. Health Perspect. 119, 1781–1787.
Behzad, H., Mineta, K., & Gojobori, T. ( 2018). Global Ramifications of Dust and Sandstorm Microbiota. Genome Biol. Evol. 10. 1093.
Bilal, Bashir, M.F., Benghoul, M., Numan, U., Shakoor, A., Komal, B., Bashir, M.A., Bashir, M., & Tan, D. ( 2020). Environmental pollution and COVID-19 outbreak: insights from Germany. Air Qual. Atmos. Health 1–10. s11869-020-00893-9 
Bontempi, E. ( 2020). First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy). Environ. Res. 186, 109639. 
Bourouiba, L. (2020). Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA 323, 1837–1838. 
Brindley, H., Knippertz, P., Ryder, C., & Ashpole, I. (2012). A critical evaluation of the ability of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal infrared red-green-blue rendering to identify dust events: Theoretical analysis. J. Geophys. Res. 117, 7201.
Broomandi, P., & Bakhtiar Pour, A. (2017). Dust Source Identification Using Physical- Chemical Characterization and Numerical Modeling in Masjed Soleyman TT. ijhe 9, 517–526.
BROOMANDI, P., & RASHIDI, Y. ( 2018). THE EFFECT OF DUST STORM ON THE MICROBIAL QUALITY OF AMBIENT AIR IN AHVAZ CITY AND DUST SOURCE IDENTIFICATION USING NUMERICAL MODELING. Environ. Sci. 16, 49–64.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., ... & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature communications, 8(1), 2013.Cao, Y., Shao, L., Jones, T., Oliveira, M.L.S., Ge, S., Feng, X., Silva, L.F.O., BéruBé, K. (2021). Multiple relationships between aerosol and COVID-19: A framework for global studies. Gondwana Res. 93, 243–251. 
Chen, G., Zhang, W., Li, S., Williams, G., Liu, C., Morgan, G.G., Jaakkola, J.J.K., & Guo, Y. ( 2017). Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study. Environ. Res. 156, 306–311. 
Chow, K.-C., Xiao, J., & Meng-Wang, Y. (2022). Simulation of dust activities in the southern high latitudes of Mars. Planetary and Space Science, 217
Delangizan, S., & Jafari Motlagh, Z. (2013). Dust Phenomenon Affects on Cardiovascular and Respiratory Hospitalizations and Mortality “A Case Study in Kermanshah, during March-September 2010-2011 TT. ijhe 6, 65–76.
Després, V., Huffman, J.A., Burrows, S.M., Hoose, C., Safatov, A., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl, U., & Jaenicke, R. (2012).  Primary biological aerosol particles in the atmosphere: a review. Tellus B Chem. Phys. Meteorol. 64, 15598. 
Domingo, J.L., Marquès, M., & Rovira, J. (2020). Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environ. Res. 188, 109861. 
Draxler, R., & Hess, G. (1997). Description of the HYSPLIT_4 modelling system. NOAA Tech. Mem. ERL ARL-224.
Escudero, M., Querol, X., Pey, J., Alastuey, A., Pérez, N., Ferreira, F., Alonso, S., Rodríguez, S., & Cuevas, E. ( 2007).  A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos. Environ. 41, 5516–5524. 
Fattorini, D., & Regoli, F. (2020). Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 264, 114732.
Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., Kiranoglu, M., & Twardella, D. (2008). Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos. Environ. 42, 6597–6605. 
Geravandi, S., Sicard, P., Khaniabadi, Y.O., De Marco, A., Ghomeishi, A., Goudarzi, G., Mahboubi, M., Yari, A.R., Dobaradaran, S., Hassani, G., Mohammadi, M.J., & Sadeghi, S.  (2017). A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran. Environ. Sci. Pollut. Res. 24, 18152–18159. 
Givehchi, R., Arhami, M., & Tajrishy, M. (2013). Contribution of the Middle Eastern dust source areas to PM10 levels in urban receptors: Case study of Tehran, Iran. Atmos. Environ. 75, 287–295. 
Gonzalez-Toril, E., Osuna, S., Viúdez-Moreiras, D., Navarro-Cid, I., Toro, S., Sor, S., Mora, R., Puente-Sánchez, F., de Diego Castilla, G., & Aguilera, A.  (2020). Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere. Sci. Rep. 10. 
Goudarzi, G., Alavi, N., Geravandi, S., Idani, E., Behrooz, H.R.A., Babaei, A.A., Alamdari, F.A., Dobaradaran, S., Farhadi, M., & Mohammadi, M.J. (2018). Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran. Int. J. Biometeorol. 62, 1075–1083.
Goudarzi, G., Shirmardi, M., Khodarahmi, F., Hashemi Shahraki, A., Alavi, N., Ankali, K., Babaei, A., Soleimani, Z., & Marzouni, M.  (2014).  Particulate matter and bacteria characteristics of the Middle East Dust (MED) storms over Ahvaz, Iran. Aerobiologia (Bologna). 30, 1–12. 
Grace, K., Rajkumar, M., Devasena, M.S.G., Rajathi, S., Usha, K., & Raabiathul, B. (2016). Air pollution analysis using enhanced K-Means clustering algorithm for real time sensor data.7848362.
Guan, Q., Sun, X., Yang, J., Pan, B., Zhao, S., & Wang, L. (2017).  Dust Storms in Northern China: Long-Term Spatiotemporal Characteristics and Climate Controls. J. Clim. 30, 6683–6700. 
Guan, W.-J., Ni, Z., Hu, Y., Liang, W., Ou, C.-Q., He, J., Liu, L., Shan, H., Lei, C., Hui, D., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., & Zhong, N. (2020). Clinical characteristics of 2019 novel coronavirus infection in China. 2020.02.06.20020974.
Hadei, M., Hopke, P.K., Jonidi, A., & Shahsavani, A. ( 2020). A Letter about the Airborne Transmission of SARS-CoV-2 Based on the Current Evidence. Aerosol Air Qual. Res. 20, 911–914. 
Henmi, T., Flanigan, R. & Padilla, R. (2005).  Development and Application of an Evaluation Method for the WRF Mesoscale Model. Army Research Laboratory, ARL-TR3657.
Hennen, M., White, K.H., & Shahgedanova, M. (2019). An Assessment of SEVIRI Imagery at Various Temporal Resolutions and the Effect on Accurate Dust Emission Mapping. Remote Sens. 11, 918. rs11080918
Hennen, M., Chappell, A., Edwards, B. L., Faist, A. M., Kandakji, T., Baddock, M. C., ... & Webb, N. P. (2022). A North American dust emission climatology (2001–2020) calibrated to dust point sources from satellite observations. Aeolian Research, 54, 100766.
Hu, X., Waller, L.A., Al-Hamdan, M.Z., Crosson, W.L., Estes, M.G., Estes, S.M., Quattrochi, D.A., Sarnat, J.A., & Liu, Y. (2013). Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environ. Res. 121, 1–10.envres.2012.11.003.
[ICRP] International Commission on Radiological Protection. 1994. Human respiratory tract model for radiological protection. Oxford: ICRP Publication 66, Pergamon Press.
Jayaweera, M., Perera, H., Gunawardana, B., & Manatunge, J. (2020).  Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 188, 109819. 
Jiang, Y., & Xu, J. (2020).  The association between COVID-19 deaths and short-term ambient air pollution/meteorological condition exposure: a retrospective study from Wuhan, China. Air Qual. Atmos. Health 1–5. 
Kai, T., Huang, Z., Huang, J., Maki, T., Zhang, S., Ma, X., Shi, J., Jianrong, B., Zhou, T., Wang, G., & Zhang, L. ( 2017). Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmos. Chem. Phys. Discuss. 1–41. 
Konstantinoudis, G., Padellini, T., Bennett, J., Davies, B., Ezzati, M., & Blangiardo, M.  (2021). Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical spatial analysis. Environ. Int. 146, 106316. 
Kumar, A., Patil, R.S., Dikshit, A.K., Islam, S. & Kumar, R. (2016).  Evaluation of control strategies for industrial air pollution sources using American Meteorological Society/Environmental Protection Agency RegulatoryModel with simulated meteorology by Weather Research and Forecasting Model. J. Cleaner Prod. 116: 110–117.
Lambert, A.L., Trasti, F.S., Mangum, J.B., & Everitt, J.I.  (2003).  Effect of preexposure to ultrafine carbon black on respiratory syncytial virus  infection in mice. Toxicol. Sci. 72, 331–338.
Lauer, S.A., Grantz, K.H., Bi, Q., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., Reich, N.G., & Lessler, J.  (2020).  The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 172, 577–582. 
Lancaster. N, Greeley. R., & asmussen.K. (1991). Interaction between unvegetated desert surfaces and the atmospheric boundary layer: a preliminary assessment.
Lee, H.J., Liu, Y., Coull, B., Schwartz, J., & Koutrakis, P. (2011).  A novel calibration approach of MODIS AOD data to predict PM 2.5 concentrations. ACPD Chem. Phys. Discuss 11, 9769–9795. 
Li, L., Huang, Q., Wang, D.C., Ingbar, D.H., & Wang, X.  (2020).  Acute lung injury in patients with COVID-19 infection. Clin. Transl. Med. 10, 20–27. 
Lin, C.-I., Tsai, C.-H., Sun, Y.-L., Hsieh, W.-Y., Lin, Y.-C., Chen, C.-Y., Lin, C.-S.  (2018). Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int. J. Biol. Sci. 14, 253–265. 
Marsham, J.H., Hobby, M., Allen, C.J.T., Banks, J.R., Bart, M., …. & Washington, R. (2013).  Meteorology and dust in the central Sahara: Observations from Fennec supersite-1 during the June 2011 Intensive Observation Period. J. Geophys. Res. Atmos. 118, 4069–4089. 
Martínez, M.A., Ruiz, J., & Cuevas, E.  (2009). Use of SEVIRI images and derived products in a WMO Sand and dust Storm Warning System. IOP Conf. Ser. Earth Environ. Sci. 7, 12004. 
Meo, S.A., Abukhalaf, A.A., Alomar, A.A., Alessa, O.M., Sami, W., & Klonoff, D.C. (2021).  Effect of environmental pollutants PM-2.5, carbon monoxide, and ozone on the incidence and mortality of SARS-COV-2 infection in ten wildfire affected counties in California. Sci. Total Environ. 757, 143948. scitotenv.2020.143948.
Middleton, N. (2020).  Health in dust belt cities and beyond—an essay by Nick Middleton. BMJ 371, m3089. 
Miri, M., Ebrahimi Aval, H., Ehrampoush, M.H., Mohammadi, A., Toolabi, A., Nikonahad, A., Derakhshan, Z., & Abdollahnejad, A. (2017). Human health impact assessment of exposure to particulate matter: an AirQ software modeling. Environ. Sci. Pollut. Res. 24, 16513–16519. 
Modarres, M., Amiri, M., & Jackson, C. (2017).  Types of Accelerated Testing and Modeling Concepts. Probabilistic Phys. Fail. Approach to Reliab., Wiley Online Books. 
Molinaro, A., Carriero, N., Bjornson, R., Hartge, P., Rothman, N., & Chatterjee, N.  (2011).  Power of Data Mining Methods to Detect Genetic Associations and Interactions. Hum. Hered. 72, 85–97. 
Morawska, L., & Cao, J.  (2020).  Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 139, 105730.envint.2020.105730.
Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, G., & Sehatkashani, S.  (2018).  Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos. Environ. (1994). 173, 265–276. 
Oleniacz, R., & Rzeszutek, M. (2014). Assessment of the impact of spatial data on the results of air pollution dispersion modeling. Geoinformatica Polonica, 13(1), 57-68.
Neisi, A., Dastoorpoor, M., Goudarzi, G., Borsi, S.-H., Attar, G., & Attar, S. (2019). The Impact of Dusty Days on Fungi Spores: Hot vs. Cold Seasons of Ahvaz, Iran. Heal. Scope In Press. jhealthscope.80284.
Neophytou, A.M., Yiallouros, P., Coull, B.A., Kleanthous, S., Pavlou, P., Pashiardis, S., Dockery, D.W., Koutrakis, P., & Laden, F. (2013). Particulate matter concentrations during desert dust outbreaks and daily mortality in Nicosia, Cyprus. J. Expo. Sci. Environ. Epidemiol. 23, 275–280.
Niu, J., Rasmussen, P., Wheeler, A., Williams, R., & Chénier, M. (2010).  Evaluation of Airborne Particulate Matter and Metals Data in Personal, Indoor and Outdoor Environments Using ED-XRF and ICP-MS and Co-located Duplicate Samples. Atmos. Environ. 44, 235–245.
Nourmoradi, H., Moradnejadi, K., Moghadam, F., Khosravi, B., Hemati, L., Khoshniyat, R., & Kazembeigi, F. (2015). The Effect of Dust Storm on the Microbial Quality of Ambient Air in Sanandaj: A City Located in the West of Iran. Glob. J. Health Sci. 7.
Paital, B., & Agrawal, P.K. (2020). Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: a review. Environ. Chem. Lett. 
Patlakas, P. Christos, S., Helena,  F., Christina. K., & George,  K.  (2019).  Regional Climatic Features of the Arabian Peninsula” Atmosphere 10, no. 4: 220. 
Peng, L., Zhao, X., Tao, Y., Mi, S., Huang, J., & Zhang, Q.  (2020). The effects of air pollution and meteorological factors on measles cases in Lanzhou, China. Environ. Sci. Pollut. Res. 27.
Pirsaheb, M., Bakhshi, S., Almasi, A., Mousavi, S.A., Rezaei, M., Sharafi, H., & Saleh, E.  (2016). Evaluating the effect of meteorological parameters (humidity,temperature,wind speed and pressure) on the dust phenomenon - Case study: Kermanshah,Iran (2008-2012) 8, 17847–17855.
Pope, C.A. 3rd, Bhatnagar, A., McCracken, J.P., Abplanalp, W., Conklin, D.J., & O’Toole, T. (2016). Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and  Systemic Inflammation. Circ. Res. 119, 1204–1214. CIRCRESAHA.116.309279.
Pun, V.C., Kazemiparkouhi, F., Manjourides, J., & Suh, H. (2017). Long-Term PM2.5 Exposures and Respiratory, Cancer and Cardiovascular Mortality in American Older Adults. Am. J. Epidemiol. 186. 
Rahmani, A.R., Leili, M., Azarian, G., & Poormohammadi, A. (2020). Sampling and detection of corona viruses in air: A mini review. Sci. Total Environ. 740, 140207. 
Rashki, A., Kaskaoutis, D.G., Francois, P., Kosmopoulos, P.G., & Legrand, M. (2015). Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Res. 16, 35–48. 
Rashki, A., Middleton, N., & Goudie, A.  (2021). Dust storms in Iran – Distribution, causes, frequencies and impacts. Aeolian Res. 48, 100655. 
Reche, I., D’Orta, G., Mladenov, N., Winget, D.M., & Suttle, C.A. (2018). Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 12, 1154–1162. 
Rodriguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana, M., Pérez, N., Pandolfi, M., & de la Rosa, J.  (2011). Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos. Chem. Phys. 11, 6663–6685. 
Rohrer, M., Flahault, A.,  & Stoffel, M. (2020). Peaks of Fine Particulate Matter May Modulate the Spreading and Virulence of COVID-19. Earth Syst. Environ. 4, 789–796. 
Salmabadi, H., Khalidy, R., & Saeedi, M. (2020). Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005–2017. Atmos. Res. 241, 104947. 
Sandra, M., Massimo, S., Annunziata, F., Paolo, G.G., Achille, M., & Francesco, F. (2011). Saharan Dust and Associations between Particulate Matter and Daily Mortality in Rome, Italy. Environ. Health Perspect. 119, 1409–1414. 
Seaman,  N. L. (2000). Meteorological modeling for airquality assessments. Atmos. Environ. 34: 2231–2259.
Seposo, X., Ueda, K., Sugata, S., Yoshino, A., & Takami, A. (2020). Short-term effects of air pollution on daily single- and co-morbidity cardiorespiratory outpatient visits. Sci. Total Environ. 729, 138934. 
Shafiee, M., Feghhi, S.A.H., & Rahighi, J.  (2016). Numerical Analysis of the Beam Position Monitor Pickup for the Iranian Light Source Facility. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 847. 
Shafiee, M., Feghhi, S.A.H., & Rahighi, J. (2016). Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system. J. Instrum. 11, P12020–P12020. 
Shahsavani, A., Naddafi, K., Jafarzade Haghighifard, N., Mesdaghinia, A., ….. & Goudarzi, G.  (2012). The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010. J. Arid Environ. 77, 72–83. 
Shahsavani, A., Tobías, A., Querol, X., Stafoggia, M., Abdolshahnejad, M., Mayvaneh, F., …. & Emam, B.  (2020). Short-term effects of particulate matter during desert and non-desert dust days on mortality in Iran. Environ. Int. 134, 105299. 
Shobha, N., & Asha, T. (2017). Monitoring weather based meteorological data: Clustering approach for analysis. ICIMIA.7975575. 
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K., M.Tignor, & Miller, H.  (2007). Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC.
Tsai, D.-H., Riediker, M., Berchet, A., Paccaud, F., Waeber, G., Vollenweider, P., & Bochud, M.  (2019). Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. 26. 
Tüysüzo─člu, G., Birant, D., & Pala, A.  (2019).  Majority Voting Based Multi-Task Clustering of Air Quality Monitoring Network in Turkey. Appl. Sci. 9, 1610. 
van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., … & Munster, V.J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567. 
Vankadari, N., & Wilce, J.A. (2020). Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of  spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect.1739565.
Verweij, P. E., Gangneux, J. P., Bassetti, M., Brüggemann, R. J., Cornely, O. A., Koehler, P., ... & Hoenigl, M. (2020). Diagnosing COVID-19-associated pulmonary aspergillosis. The Lancet Microbe, 1(2), e53-e55.Wang, H., Tian, C., Wang, W., Luo, X.  (2019). Temporal Cross-Correlations between Ambient Air Pollutants and Seasonality of Tuberculosis: A Time-Series Analysis. Int. J. Environ. Res. Public Health 16, 1585. 
Weil, T., Filippo, C., Albanese, D., Donati, C., Pindo, M., Pavarini, L., Carotenuto, F., Pasqui, M., Poto, L., Gabrieli, J., Barbante, C., Sattler, B., Cavalieri, D., & Miglietta, F.  (2017). Legal immigrants: Invasion of alien microbial communities during winter occurring desert dust storms. Microbiome 5. 017-0249-7.
WHO, (2007). Health relevance of particulate matter from various sources. Report on a WHO worksho.
Wickramasinghe, N., Wallis, M., Coulson, S., Kondakov, A., Steele, E., Gorczynski, R., Temple, R., Tokoro,   G., Klyce, B., & Slijepcevic, P.  (2020). Intercontinental Spread of COVID-19 on Global Wind Systems. Curr. Res. Virol. 4, 2020.
Wigginton, K.R., & Boehm, A.B.  (2020). Environmental Engineers and Scientists Have Important Roles to Play in Stemming Outbreaks and Pandemics Caused by Enveloped Viruses. Environ. Sci. Technol. 54, 3736–3739. 
Wu, X., Nethery, R., Benjamin, M., Braun, D., & Dominici, F.  (2020). Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study.20054502.
Yang, Z., Hao, J., Huang, S., Yang, W., Zhu, Z., Tian, L., Lu, Y., Xiang, H., & Liu, S.  (2020). Acute effects of air pollution on the incidence of hand, foot, and mouth disease in Wuhan, China. Atmos. Environ. 225, 117358. 
Yao, T.-T., Qian, J.-D., Zhu, W.-Y., & Wang, G.-Q.  (2020). A Systematic Review of Lopinavir Therapy for SARS Coronavirus and MERS Coronavirus-A Possible Reference for Coronavirus Disease-19 Treatment Option. J. Med. Virol. 92. jmv.25729.
Ye, Q., Fu, J., Mao, J., & Shang, S.  (2016). Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in children. Environ. Sci. Pollut. Res. 23, 20178–20185. 
Ye, R., & Liu, Z. (2019). ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp. Mol. Pathol. 113, 104350.
Yousefi, M., Kafash, A., Khani, A., & Nabati, N. (2020). Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor. Scientific Reports, 10(1), 18073. 
Zarasvandi, A., Carranza, E.J.M., Moore, F., & Rastmanesh, F. (2011). Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J. Geochemical Explor. 111, 138–151.
Zhu, Y., Xie, J., Huang, F., & Cao, L.  (2020).  Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 727, 138704.