Origin of Heavy Metals amongst Nuisance Dust-Fall Particles in Western Iran

Document Type : Original Research Paper


Department of Environment Sciences, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416 Sanandaj, Iran



The purpose of this study was to evaluated the origin of the heavy metals amongst nuisance dust particles in Sanandaj, Khorrmabad and Andimeshk cities located in different latitudes in western Iran for the dustiest year during last decade. Samples of dust-fall particles were collected with 10 days intervals from these three cities for the duration of June 2012 to July 2013 using Deposit Gauge Method. Concentration of the heavy metals including iron, manganese, zinc, copper, arsenic, chromium, silver, nickel, lead and cadmium were measured using atomic absorption spectroscopy. The Quantification of Contamination index (QC) was applied to evaluate the origin of heavy metals among dust-fall particles collected in three stations. The results revealed that the annual mean rate of dust-fall was 1.73, 2.66 and 3.37 g/m2 per 10 days for Sanandaj, Khorramabad and Andimeshk, respectively. The highest and the lowest amount of dust-fall were obtained for July and February, respectively, while Fe had the highest concentration among the metals studied. The temperature and wind speed were found to be the most correlated meteorological parameters to dust-fall content throughout the three stations. According to QC index; Ag, Cu, Cd, As, Pb, Mn and Zn (except Pb and Mn for Andimeshk) were derived mainly from similar origins such as anthropogenic activities but the increased values of Fe, Ni, and Cr were ascribed to natural processes. Furthermore, Cu had the highest correlation with other heavy metals measured and was determined the most stable metal amongst dust-fall particles for the three studied stations. 


Main Subjects

Asaah, V. A., Abimbola, A. F., & Suh, C. E. (2006). Heavy metal concentrations and distribution in surface soils of the Bassa industrial zone 1, Douala, Cameroon. Arabian Journal for Science and Engineering, 31(2), 147-158. 
ASTM D1739-98. (2010). Standard Test Method for Collection and Measurement of Dust fall    (Settleable    Particulate Matter)   
Ayub, A., & Ahmad, S. S. (2020). Seasonal assessment of groundwater contamination in coal mining areas of Balochistan. Sustainability, 12(17), 6889. 
Badamasi, H., Olusola, J. A., Durodola, S. S., Akeremale, O. K., Ore, O. T., & Bayode, A. A. (2023). Contamination Levels, Source Apportionments, and Health Risks Evaluation of Heavy Metals from the Surface Water of the Riruwai Mining Area, North-Western Nigeria. Pollution, 9(3), 929-949. 
Escudero, M., Querol, X., Pey, J., Alastuey, A., Pérez, N., Ferreira, F., Alonso, S., Rodríguez, S., & Cuevas, E. (2007). A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmospheric Environment, 41(26), 5516-5524. 
Feng, S., Liu, H., Zhang, N., Lin, H., Du, X., & Liu, Y. (2012). Contamination assessment of copper, lead, zinc and chromium in dust fall of Jinan, NE China. Environmental Earth Sciences, 66, 1881-1886. 
Garrison, V. H., Shinn, E. A., Foreman, W. T., Griffin, D. W., Holmes, C. W., Kellogg, C. A., Majewski, M. S., Richardson, L. L., Ritchie, K. B., & Smith, G. W. (2003). African and Asian dust: from desert soils to coral reefs. BioScience, 53(5), 469-480. 
Ghrefat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environmental monitoring and assessment, 178, 95-109. 
Goudie, A., Parker, A., Bull, P., White, K., & Al-Farraj, A. (2000). Desert loess in Ras Al Khaimah, United Arab Emirates. Journal of Arid Environments, 46(2), 123-135. 
Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media. 
Griffin, D. W., & Kellogg, C. A. (2004). Dust storms and their impact on ocean and human health: dust in Earth’s atmosphere. EcoHealth, 1(3), 284-295. 
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water research, 14(8), 975-1001. 
Hansson, M., & Abedi-Valugerdi, M. (2003). Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice. Clinical & Experimental Immunology, 131(3), 405-414. 
Hojati, S., Khademi, H., Cano, A. F., & Landi, A. (2012). Characteristics of dust deposited along a transect between central Iran and the Zagros Mountains. Catena, 88(1), 27-36. 
Jaradat, Q. M., Momani, K. A., Jbarah, A.-A. Q., & Massadeh, A. (2004). Inorganic analysis of dust fall and office dust in an industrial area of Jordan. Environmental research, 96(2), 139-144. 
Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC press. 
Khuzestani, R. B., & Souri, B. (2013). Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran. Journal of Environmental Sciences, 25(7), 1346-1354. 
Krolak, E. (2000). Heavy metals in falling dust in Eastern Mazowieckie province. Polish Journal of environmental studies, 9(6), 517-522. 
Krueger, B. J., Grassian, V. H., Cowin, J. P., & Laskin, A. (2004). Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy. In Atmospheric Environment (Vol. 38, pp. 6253-6261).
Léon, J. F., & Legrand, M. (2003). Mineral dust sources in the surroundings of the north Indian Ocean. Geophysical Research Letters, 30(6). 
Li, H., Wu, H., Wang, Q. g., Yang, M., Li, F., Sun, Y., Qian, X., Wang, J., & Wang, C. (2017). Chemical partitioning of fine particle-bound metals on haze–fog and non-haze–fog days in Nanjing, China and its contribution to human health risks. Atmospheric Research, 183, 142-150. 
Li, Y., Zhang, Z., Liu, H., Zhou, H., Fan, Z., Lin, M., Wu, D., & Xia, B. (2016). Characteristics, sources and health risk assessment of toxic heavy metals in PM 2.5 at a megacity of southwest China. Environmental geochemistry and health, 38, 353-362. 
Lin, C.-C., Chen, S.-J., Huang, K.-L., Hwang, W.-I., Chang-Chien, G.-P., & Lin, W.-Y. (2005). Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science & Technology, 39(21), 8113-8122. 
Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of hazardous materials, 173(1-3), 744-749. 
Maleki, T., Sahraie, M., Sasani, F., & Shahmoradi, M. (2017). Impact of dust storm on agricultural production in Iran. International Journal of Agricultural Science, Research and Technology in Extension and Education Systems (IJASRT in EES), 7(1), 19-26. 
Masatoshi, Y. (2002). Climatology of yellow sand (Asian sand, Asian dust or Kosa) in East Asia. Science in China Series D: Earth Sciences, 45, 59-70. 
Menéndez, I., Diaz-Hernandez, J., Mangas, J., Alonso, I., & Sánchez-Soto, P. (2007). Airborne dust accumulation and soil development in the North-East sector of Gran Canaria (Canary Islands, Spain). Journal of Arid Environments, 71(1), 57-81. 
Mmolawa, K. B., Likuku, A. S., & Gaboutloeloe, G. K. (2011). Assessment of heavy metal pollution in soils along major roadside areas in Botswana. African Journal of Environmental Science and Technology, 5(3), 186-196. 
Morais, S., Costa, F. G., & Pereira, M. d. L. (2012). Heavy metals and human health. Environmental health–emerging issues and practice, 10(1), 227-245. 
Mousavi, A., Sowlat, M. H., & Sioutas, C. (2018). Diurnal and seasonal trends and source apportionment of redox-active metals in Los Angeles using a novel online metal monitor and Positive Matrix Factorization (PMF). Atmospheric Environment, 174, 15-24. 
Naddafi, K., Nabizadeh, R., Soltanianzadeh, Z., & Ehrampoosh, M. (2006). Evaluation of dustfall in the air of Yazd. Journal of Environmental Health Science & Engineering, 3(3), 161-168. 
Nazari, S., Kermani, M., Fazlzadeh, M., Matboo, S. A., & Yari, A. R. (2016). The origins and sources of dust particles, their effects on environment and health, and control strategies: A review. Journal of Air pollution and Health, 1(2), 137-152. 
Prospero, J. M., & Lamb, P. J. (2003). African droughts and dust transport to the Caribbean: Climate change implications. Science, 302(5647), 1024-1027. 
Rajabi, M. & Souri, B. (2015). Evaluation of heavy metals among dustfall particles of Sanandaj, Khorramabad and Andimeshk cities in western Iran2012-2013. Iranian Journal of Health and Environment, 8(1), 11-22. 
Rajabi, M. & Souri, B. (2018). Comparison of Enrichment Factor, Ecological Risk, Pollution Load and Convergence Coefficient to evaluate heavy metals pollution in dust fall of western Iran. Environmental Researches, 18. 
Rakotondrabe, F., Ngoupayou, J. R. N., Mfonka, Z., Rasolomanana, E. H., Abolo, A. J. N., & Ako, A. A. (2018). Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): multivariate statistical analysis approach. Science of the total environment, 610, 831-844. 
Ridgwell, A. J. (2003). Implications of the glacial CO2 “iron hypothesis” for Quaternary climate change. Geochemistry, Geophysics, Geosystems, 4(9). 
Shahsavani, A., Naddafi, K., Yar Ahmadi, M., Mesdaghinia, A., Younesian, M., Jaafarzadeh. Haghighifard, N, and et al. (2011). Analysis of the dust input to Iran with emphasis on Khuzestan Fourteenth National Conference on Environmental Health – Yazd Fourteenth National Conference on Environmental Health Yazd, Iran. 
Singh, M., Jaques, P. A., & Sioutas, C. (2002). Size distribution and diurnal characteristics of particle-bound metals in source and receptor sites of the Los Angeles Basin. Atmospheric Environment, 36(10), 1675-1689. 
Soleimani, M., Amini, N., Sadeghian, B., Wang, D., & Fang, L. (2018). Heavy metals and their source identification in particulate matter (PM2. 5) in Isfahan City, Iran. Journal of Environmental Sciences, 72, 166-175. 
Taghipour, M., Ayoubi, S., & Khademi, H. (2011). Contribution of lithologic and anthropogenic factors to surface soil heavy metals in western Iran using multivariate geostatistical analyses. Soil and Sediment Contamination: An International Journal, 20(8), 921-937. 
Tagliani, S. M., Carnevale, M., Armiento, G., Montereali, M. R., Nardi, E., Inglessis, M., Sacco, F., Palleschi, S., Rossi, B., & Silvestroni, L. (2017). Content, mineral allocation and leaching behavior of heavy metals in urban PM2. 5. Atmospheric Environment, 153, 47-60. 
Ventura, L. M. B., Mateus, V. L., de Almeida, A. C. S. L., Wanderley, K. B., Taira, F. T., Saint’Pierre, T. D., & Gioda, A. (2017). Chemical composition of fine particles (PM 2.5): Water-soluble organic fraction and trace metals. Air Quality, Atmosphere & Health, 10, 845-852. 
Wang, Y., Zhang, X. Y., Arimoto, R., Cao, J., & Shen, Z. (2005). Characteristics of carbonate content and carbon and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources. Atmospheric Environment, 39(14), 2631-2642. 
Zarasvandi, A., Zamanian, H., & Hejazi, E. (2010). Immobile elements and mass changes geochemistry at Sar-Faryab bauxite deposit, Zagros Mountains, Iran. Journal of Geochemical Exploration, 107(1), 77-85. 
Zarei, I., Pourkhabbaz, A., & Khuzestani, R. B. (2014). An assessment of metal contamination risk in sediments of Hara Biosphere Reserve, southern Iran with a focus on application of pollution indicators. Environmental monitoring and assessment, 186, 6047-6060. 
Zhang, D.-F., Gao, X.-J., Zakey, A., & Giorgi, F. (2016). Effects of climate changes on dust aerosol over East Asia from RegCM3. Advances in Climate Change Research, 7(3), 145-153. 
Zhang, X., Shi, P., Liu, L., Tang, Y., Cao, H., Zhang, X., Hu, X., Guo, L., Lue, Y., & Qu, Z. (2010). Ambient TSP concentration and dustfall in major cities of China: spatial distribution and temporal variability. Atmospheric Environment, 44(13), 1641-1648. 
Zhang, X. Y., Cao, J., Li, L., Arimoto, R., Cheng, Y., Huebert, B., & Wang, D. (2002). Characterization of atmospheric aerosol over XiAn in the south margin of the Loess Plateau, China. Atmospheric Environment, 36(26), 4189-4199.