Review of Phytoremediation for Arsenic-Contaminated Soils: Mechanisms and Challenges

Document Type : Review Paper

Authors

Department of Environmental Engineering, Faculty of Environment, University of Tehran

Abstract

Environmental pollution has become and increasing concern due to growing risk to human health. Soil pollution is an aspect of environmental pollution that has received comparatively less attention than water pollution. However, considering direct effects of contaminants transmission through ingestion to the human body, it can lead to greater risks for human health. Arsenic is a highly prevalent environmental pollutant, and considerable number of people worldwide suffer from constant exposure to it. While there are several ways to manage and remediate contaminated soils, phytoremediation has been paid special attention due to its higher social acceptability and lower cost. Nevertheless, this approach faces challenges, including effectively handling significant quantities of contaminated biomass, managing it appropriately, and selecting suitable plant species for the remediation process. In this regard, numerous endeavors have been undertaken to tackle these obstacles like strategies encompass the utilization of amendments, adept management of biomass, and the implementation of hybrid remediation approaches. This study aims to review prior research on mechanisms, challenges, and enhanced phytoremediation of arsenic-contaminated soils, encompassing reduction of contaminated biomass after phytoremediation.

Keywords

Main Subjects


Abid, M., Niazi, N. K., Bibi, I., Farooqi, A., Ok, Y. S., Kunhikrishnan, A., Ali, F., Ali, S., Igalavithana, A. D., & Arshad, M. (2016). Arsenic(V) biosorption by charred orange peel in aqueous environments. International Journal of Phytoremediation, 18(5), 442–449. https://doi.org/10.1080/15226514.2015.1109604
Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals--concepts and applications. Chemosphere, 91 7, 869–881.
Awa, S. H., & Hadibarata, T. (2020). Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: a Review. Water, Air, & Soil Pollution, 231(2), 47. https://doi.org/10.1007/s11270-020-4426-0
Baragaño, D, Forján, R., Álvarez, N., Gallego, J. R., & González, A. (2022). Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L. Journal of Hazardous Materials, 433, 128748. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.128748
Baragaño, Diego, Forján, R., Fernández, B., Ayala, J., Afif, E., & Gallego, J. L. R. (2020). Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. Environmental Science and Pollution Research, 27(27), 33681–33691. https://doi.org/10.1007/s11356-020-09586-3
Beresford, N. A., Fesenko, S., Konoplev, A., Skuterud, L., Smith, J. T., & Voigt, G. (2016). Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 157, 77–89. https://doi.org/10.1016/J.JENVRAD.2016.02.003
Bhat, S. A., Bashir, O., Ul Haq, S. A., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J. H. P., & Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134788
Bienert, G. P., Thorsen, M., Schüssler, M. D., Nilsson, H. R., Wagner, A., Tamás, M. J., & Jahn, T. P. (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3across membranes. BMC Biology, 6(1), 26. https://doi.org/10.1186/1741-7007-6-26
Boorboori, M. R., & Zhang, H.-Y. (2022). Arbuscular Mycorrhizal Fungi Are an Influential Factor in Improving the Phytoremediation of Arsenic, Cadmium, Lead, and Chromium. In Journal of Fungi (Vol. 8, Issue 2). https://doi.org/10.3390/jof8020176
Braeuer, S., Goessler, W., Kameník, J., Konvalinková, T., Žigová, A., & Borovička, J. (2018). Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus). Food Chemistry, 242, 225–231. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.09.038
Burló, F., Guijarro, I., Carbonell-Barrachina, A. A., Valero, D., & Martínez-Sánchez, F. (1999). Arsenic Species: Effects on and Accumulation by Tomato Plants. Journal of Agricultural and Food Chemistry, 47(3), 1247–1253. https://doi.org/10.1021/jf9806560
Cai, W., Chen, T., Lei, M., & Wan, X. (2021). Effective strategy to recycle arsenic-accumulated biomass of Pteris vittata with high benefits. Science of The Total Environment, 756, 143890. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143890
Caussy, D. (2003). Case studies of the impact of understanding bioavailability: arsenic. Ecotoxicology and Environmental Safety, 56(1), 164–173. https://doi.org/https://doi.org/10.1016/S0147-6513(03)00059-9
Chakraborti, D., Singh, S. K., Rahman, M. M., Dutta, R. N., Mukherjee, S. C., Pati, S., & Kar, P. B. (2018). Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger. In International Journal of Environmental Research and Public Health  (Vol. 15, Issue 2). https://doi.org/10.3390/ijerph15020180
Chen, C.-H., & Chiou, I.-J. (2008). Remediation of Heavy Metal-Contaminated Farm Soil Using Turnover and Attenuation Method Guided with a Sustainable Management Framework. Environmental Engineering Science - ENVIRON ENG SCI, 25, 11–32. https://doi.org/10.1089/ees.2006.0183
Cubadda, F., D’Amato, M., Mancini, F., Aureli, F., Raggi, A., Busani, L., & Mantovani, A. (2015). Assessing human exposure to inorganic arsenic in high-arsenic areas of Latium: a biomonitoring study integrated with indicators of dietary intake. Annali Di Igiene : Medicina Preventiva e Di Comunità, 27, 39–51. https://doi.org/10.7416/ai.2015.2021
Cubadda, F., Jackson, B. P., Cottingham, K. L., Van Horne, Y. O., & Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Science of The Total Environment, 579, 1228–1239. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.11.108
da Silva, E. B., de Oliveira, L. M., Wilkie, A. C., Liu, Y., & Ma, L. Q. (2018). Arsenic removal from As-hyperaccumulator Pteris vittata biomass: Coupling extraction with precipitation. Chemosphere, 193, 288–294. https://doi.org/10.1016/j.chemosphere.2017.10.116
da Silva, E., Mussoline, W., & Wilkie, A. (2019). Arsenic removal and biomass reduction of As-hyperaccumulator Pteris vittata: Coupling ethanol extraction with anaerobic digestion. Science of The Total Environment, 666. https://doi.org/10.1016/j.scitotenv.2019.02.161
Doherty, S. J., Tighe, M. K., & Wilson, S. C. (2017). Evaluation of amendments to reduce arsenic and antimony leaching from co-contaminated soils. Chemosphere, 174, 208–217. https://doi.org/10.1016/j.chemosphere.2017.01.100
Duan, G.-L., Hu, Y., Schneider, S., McDermott, J., Chen, J., Sauer, N., Rosen, B. P., Daus, B., Liu, Z., & Zhu, Y.-G. (2015). Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants, 2(1), 15202. https://doi.org/10.1038/nplants.2015.202
F., H. C., H., S. C., M., B. A. B., Nicole, K.-B., Winston, Y., Ashraf, A. M., Jenny, J., Roger, B., Volker, N., Daniel, B., M., O. P., N., A. K., Shafiqul, I., F., H. H., & Feroze, A. M. (2002). Arsenic Mobility and Groundwater Extraction in Bangladesh. Science, 298(5598), 1602–1606. https://doi.org/10.1126/science.1076978
Farraji, H., Zaman, N., Tajuddin, R., & Faraji, H. (2016). Advantages and disadvantages of phytoremediation A concise review. International Journal of Environmental & Technological Science, 2, 69–75.
Franchi, E., Cosmina, P., Pedron, F., Rosellini, I., Barbafieri, M., Petruzzelli, G., & Vocciante, M. (2019). Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Science of The Total Environment, 655, 328–336. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.242
Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology, 74, 21–31. https://doi.org/https://doi.org/10.1016/j.copbio.2021.10.024
GHOSH, M., & Singh, S. (2005). A Review on Phytoremediation of Heavy Metals and Utilization of Its By-products. Applied Ecology and Environmental Research, 3. https://doi.org/10.15666/aeer/0301_001018
Gosselin, M., & Zagury, G. (2019). Metal(loid)s inhalation bioaccessibility and oxidative potential of particulate matter from chromated copper arsenate (CCA)-contaminated soils. Chemosphere, 238, 124557. https://doi.org/10.1016/j.chemosphere.2019.124557
Gupta, K., Srivastava, S., Saxena, G., & Kumar, A. (2022a). Application of Pteris vittata L. for phytoremediation of arsenic and biomonitoring of the process through cyto-genetic biomarkers of Trigonella foenum-graecum L. Physiology and Molecular Biology of Plants, 28(1), 91–106. https://doi.org/10.1007/s12298-022-01124-4
Gupta, K., Srivastava, S., Saxena, G., & Kumar, A. (2022b). Evaluation of Phytoremediation Potential of Pteris vittata L. on Arsenic Contaminated Soil Using Allium cepa Bioassay. Bulletin of Environmental Contamination and Toxicology, 108(3), 423–429. https://doi.org/10.1007/s00128-021-03291-8
Hsi, H.-C., Hu, C.-Y., Tsou, M.-C., Hu, H.-J., Özkaynak, H., Bradham, K., Hseu, Z.-Y., Dang, W., & Chien, L.-C. (2018). Determination of hand soil loading, soil transfer, and particle size variations after hand-pressing and hand-mouthing activities. Science of The Total Environment, 627, 844–851. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.01.308
Huang, X. D., El-Alawi, Y., Gurska, J., Glick, B. R., & Greenberg, B. M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81(1), 139–147. https://doi.org/10.1016/J.MICROC.2005.01.009
Imran, M. A., Nawaz Chaudhry, M., Khan, R. M., Ali, Z., & Mahmood, T. (2013). Toxicity of arsenic (As) on seed germinationof sunflower (Helianthus annuus L. ). International Journal OfPhysical Sciences, 8, 840–847.
Indriolo, E., Na, G., Ellis, D., Salt, D. E., & Banks, J. A. (2010). A Vacuolar Arsenite Transporter Necessary for Arsenic Tolerance in the Arsenic Hyperaccumulating Fern Pteris vittata Is Missing in Flowering Plants  . The Plant Cell, 22(6), 2045–2057. https://doi.org/10.1105/tpc.109.069773
Karbassi, A. R., Nasrabadi, T., Rezai, M., & Modabberi, S. (2014). Pollution with metals (As, Sb, Hg, Zn) in agricultural soil located close to zarshuran gold mine, Iran. Environmental Engineering and Management Journal, 13, 115–120. https://doi.org/10.30638/eemj.2014.014
Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. https://doi.org/https://doi.org/10.1016/j.gexplo.2016.11.021
Khalid, S., Shahid, M., Niazi, N. K., Rafiq, M., Bakhat, H. F., Imran, M., Abbas, T., Bibi, I., & Dumat, C. (2017). Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences. In N. A. Anjum, S. S. Gill, & N. Tuteja (Eds.), Enhancing Cleanup of Environmental Pollutants: Volume 2: Non-Biological Approaches (pp. 97–140). Springer International Publishing. https://doi.org/10.1007/978-3-319-55423-5_4
Kidd, P., Barceló, J., Bernal, M. P., Navari-Izzo, F., Poschenrieder, C., Shilev, S., Clemente, R., & Monterroso, C. (2009). Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 67(1), 243–259. https://doi.org/https://doi.org/10.1016/j.envexpbot.2009.06.013
King, D. J., Doronila, A. I., Feenstra, C., Baker, A. J. M., & Woodrow, I. E. (2008). Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: Growth, arsenic uptake and availability after five years. Science of The Total Environment, 406(1), 35–42. https://doi.org/https://doi.org/10.1016/j.scitotenv.2008.07.054
Kohda, Y. H.-T., Endo, G., Kitajima, N., Sugawara, K., Chien, M.-F., Inoue, C., & Miyauchi, K. (2022). Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: An 8-year study. Science of The Total Environment, 831, 154830. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.154830
Kristanti, R. A., & Hadibarata, T. (2023). Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Current Opinion in Environmental Science & Health, 32, 100451. https://doi.org/https://doi.org/10.1016/j.coesh.2023.100451
Landberg, T., & Greger, M. (2022). Phytoremediation Using Willow in Industrial Contaminated Soil. In Sustainability (Vol. 14, Issue 14). https://doi.org/10.3390/su14148449
Lebrun, M., Miard, F., Nandillon, R., Scippa, G. S., Bourgerie, S., & Morabito, D. (2019). Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere, 222, 810–822. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.01.188
Lee, S.-H., Park, H., & Kim, J.-G. (2023). Current Status of and Challenges for Phytoremediation as a Sustainable Environmental Management Plan for Abandoned Mine Areas in Korea. In Sustainability (Vol. 15, Issue 3). https://doi.org/10.3390/su15032761
Lei, M., Dong, Z., Jiang, Y., Longhurst, P., Wan, X., & Zhou, G. (2019). Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience. Frontiers of Environmental Science and Engineering, 13(2). https://doi.org/10.1007/s11783-019-1110-y
Li, N., Hongwei, J., & Su, Y. (2022). Phytoremediation of arsenic contaminated soil based on drip irrigation and intercropping. Science of The Total Environment, 850, 157970. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.157970
Lomax, C., Liu, W.-J., Wu, L., Xue, K., Xiong, J., Zhou, J., McGrath, S. P., Meharg, A. A., Miller, A. J., & Zhao, F.-J. (2012). Methylated arsenic species in plants originate from soil microorganisms. New Phytologist, 193(3), 665–672. https://doi.org/https://doi.org/10.1111/j.1469-8137.2011.03956.x
Majumdar, A., Upadhyay, M. K., Ojha, M., Afsal, F., Giri, B., Srivastava, S., & Bose, S. (2022). Enhanced phytoremediation of Metal(loid)s via spiked ZVI nanoparticles: An urban clean-up strategy with ornamental plants. Chemosphere, 288, 132588. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132588
Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201–235. https://doi.org/https://doi.org/10.1016/S0039-9140(02)00268-0
Mariano, E., & Keltjens, W. (2003). Evaluating the role of root citrate exudation as a mechanism of aluminium resistance in maize genotypes. Plant and Soil, 256, 469–479.
Marschner, H. (2012). Preface to Second Edition (P. B. T.-M. M. N. of H. P. (Third E. Marschner (ed.); p. ix). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384905-2.00026-1
Meharg, A., & Whitaker, J. (2002). Arsenic Uptake and Metabolism in Arsenic Resistant and Non-Resistant Plant Species. New Phytologist, 154, 29–43. https://doi.org/10.1046/j.1469-8137.2002.00363.x
Mehmood, T., Ashraf, A., Peng, L., Shaz, M., Ahmad, S., Ahmad, S., Khan, I., Abid, M., Gaurav, G. K., & Riaz, U. (2023). Modern Aspects of Phytoremediation of Arsenic-Contaminated Soils BT  - Global Arsenic Hazard: Ecotoxicology and Remediation (N. K. Niazi, I. Bibi, & T. Aftab (eds.); pp. 433–457). Springer International Publishing. https://doi.org/10.1007/978-3-031-16360-9_20
Mestrot, A., Feldmann, J., Krupp, E. M., Hossain, M. S., Roman-Ross, G., & Meharg, A. A. (2011). Field Fluxes and Speciation of Arsines Emanating from Soils. Environmental Science & Technology, 45(5), 1798–1804. https://doi.org/10.1021/es103463d
Mombo, S., Foucault, Y., Deola, F., Gaillard, I., Goix, S., Shahid, M., Schreck, E., Pierart, A., & Dumat, C. (2016). Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. Journal of Soils and Sediments, 16(4), 1214–1224. https://doi.org/10.1007/s11368-015-1069-7
Nasrabadi, T., Abbasimaedeh, P., Zangeneh Sirdari, Z., Shirani, N., Solgi, S., & Tajik, M. (2015). Analyzing the quantitative risk and hazard of different waterborne arsenic exposures: case study of Haraz River, Iran. Environmental Earth Sciences, 74. https://doi.org/10.1007/s12665-015-4058-7
Nasrabadi, T., & Bidabadi, N. S. (2013). Evaluating the spatial distribution of quantitative risk and hazard level of  arsenic exposure in groundwater, case study of Qorveh County, Kurdistan Iran. Iranian Journal of Environmental Health Science & Engineering, 10(1), 30. https://doi.org/10.1186/1735-2746-10-30
Neidhardt, H., Kramar, U., Tang, X., Guo, H., & Norra, S. (2015). Arsenic accumulation in the roots of Helianthus annuus and Zea mays by irrigation with arsenic-rich groundwater: Insights from synchrotron X-ray fluorescence imaging. Geochemistry, 75(2), 261–270. https://doi.org/https://doi.org/10.1016/j.chemer.2015.04.001
Niazi, N. K., Bibi, I., Fatimah, A., Shahid, M., Javed, M. T., Wang, H., Ok, Y. S., Bashir, S., Murtaza, B., Saqib, Z. A., & Shakoor, M. B. (2017). Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response. International Journal of Phytoremediation, 19(7), 670–678. https://doi.org/10.1080/15226514.2016.1278427
Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Burton, E. D., Wang, H., Shaheen, S. M., Rinklebe, J., & Lüttge, A. (2018). Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 232, 31–41. https://doi.org/https://doi.org/10.1016/j.envpol.2017.09.051
Oladoye, P. O., Olowe, O. M., & Asemoloye, M. D. (2022). Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere, 288, 132555. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132555
Panda, S. K., Upadhyay, R. K., & Nath, S. (2010). Arsenic Stress in Plants. Journal of Agronomy and Crop Science, 196(3), 161–174. https://doi.org/https://doi.org/10.1111/j.1439-037X.2009.00407.x
Patel, M., Kumari, A., & Parida, A. K. (2020). Arsenic Tolerance Mechanisms in Plants and Potential Role of Arsenic Hyperaccumulating Plants for Phytoremediation of Arsenic-Contaminated Soil BT  - Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II: Mechanisms of Ad (M. Hasanuzzaman (ed.); pp. 137–162). Springer Singapore. https://doi.org/10.1007/978-981-15-2172-0_7
Petrick, J. S., Ayala-Fierro, F., Cullen, W. R., Carter, D. E., & Vasken Aposhian, H. (2000). Monomethylarsonous Acid (MMAIII) Is More Toxic Than Arsenite in Chang Human Hepatocytes. Toxicology and Applied Pharmacology, 163(2), 203–207. https://doi.org/https://doi.org/10.1006/taap.1999.8872
Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214
Prasad, J., Tiwari, S., Singh, B. K., & Dubey, N. K. (2022). 7 - Phytoextraction of heavy metals: Challenges and opportunities (V. Kumar, M. P. Shah, & S. K. B. T.-P. T. for the R. of H. M. and O. C. from S. and W. Shahi (eds.); pp. 173–187). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-85763-5.00011-8
Preetha, J. S., Arun, M., Vidya, N., Kowsalya, K., Halka, J., & Ondrasek, G. (2023). Biotechnology Advances in Bioremediation of Arsenic: A Review. In Molecules (Vol. 28, Issue 3). https://doi.org/10.3390/molecules28031474
Rafiq, M., Shahid, M., Abbas, G., Shamshad, S., Khalid, S., Niazi, N. K., & Dumat, C. (2017). Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. International Journal of Phytoremediation, 19(7), 662–669. https://doi.org/10.1080/15226514.2016.1278426
Rahman, M. M., Chowdhury, U. K., Mukherjee, S. C., Mondal, B. K., Paul, K., Lodh, D., Biswas, B. K., Chanda, C. R., Basu, G. K., Saha, K. C., Roy, S., Das, R., Palit, S. K., Quamruzzaman, Q., & Chakraborti, D. (2001). Chronic Arsenic Toxicity in Bangladesh and West Bengal, India—A Review and Commentary. Journal of Toxicology: Clinical Toxicology, 39(7), 683–700. https://doi.org/10.1081/CLT-100108509
Renella, G., Landi, L., Valori, F., & Nannipieri, P. (2007). Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and a sandy soil. Applied Soil Ecology, 36(2), 124–129. https://doi.org/https://doi.org/10.1016/j.apsoil.2007.01.001
Rosas, M., Guzmán Mar, J., Hernandez-Ramírez, A., Garza-González, M., & Reyes, L. (2014). Arsenic accumulation in maize crop (Zea mays): A review. The Science of the Total Environment, 488-489C, 176–187. https://doi.org/10.1016/j.scitotenv.2014.04.075
Saha, D., & Ray, R. K. (2019). Groundwater Resources of India: Potential, Challenges and Management BT  - Groundwater Development and Management: Issues and Challenges in South Asia (P. K. Sikdar (ed.); pp. 19–42). Springer International Publishing. https://doi.org/10.1007/978-3-319-75115-3_2
Samiee, F., Leili, M., Faradmal, J., Torkshavand, Z., & Asadi, G. (2019). Exposure to arsenic through breast milk from mothers exposed to high levels of arsenic in drinking water: Infant risk assessment. Food Control, 106, 106669. https://doi.org/https://doi.org/10.1016/j.foodcont.2019.05.034
Schooley, T., Weaver, M. J., Mullins, D., & Eick, M. (2009). The History of Lead Arsenate Use in Apple Production: Comparison of its Impact in Virginia with Other States.
Schwitzguébel, J.-P. (2017). Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. Journal of Soils and Sediments, 17(5), 1492–1502. https://doi.org/10.1007/s11368-015-1253-9
Seraj, M. F., Rahman, T., Lawrie, A. C., & Reichman, S. M. (2020). Assessing the Plant Growth Promoting and Arsenic Tolerance Potential of Bradyrhizobium japonicum CB1809. Environmental Management, 66(5), 930–939. https://doi.org/10.1007/s00267-020-01351-z
Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., Aslam, M., & Dumat, C. (2015). Heavy Metal Stress and Crop Productivity. In K. R. Hakeem (Ed.), Crop Production and Global Environmental Issues (pp. 1–25). Springer International Publishing. https://doi.org/10.1007/978-3-319-23162-4_1
Shen, X., Dai, M., Yang, J., Sun, L., Tan, X., Peng, C., Ali, I., & Naz, I. (2022). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere, 291, 132979. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132979
Shukla, A., & Srivastava, S. (2019). A Review of Phytoremediation Prospects for Arsenic Contaminated Water and Soil. Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation, 243–254. https://doi.org/10.1016/B978-0-12-813912-7.00008-9
Simiele, M., Lebrun, M., Miard, F., Trupiano, D., Poupart, P., Forestier, O., Scippa, G. S., Bourgerie, S., & Morabito, D. (2020). Assisted phytoremediation of a former mine soil using biochar and iron sulphate: Effects on As soil immobilization and accumulation in three Salicaceae species. Science of The Total Environment, 710, 136203. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.136203
Singh, S., Karwadiya, J., Srivastava, S., Patra, P. K., & Venugopalan, V. P. (2022). Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecological Engineering, 175, 106476. https://doi.org/https://doi.org/10.1016/j.ecoleng.2021.106476
Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. https://doi.org/https://doi.org/10.1016/S0883-2927(02)00018-5
Song, B., Xu, P., Chen, M., Tang, W., Zeng, G., Gong, J., Zhang, P., & Ye, S. (2019). Using nanomaterials to facilitate the phytoremediation of contaminated soil. Critical Reviews in Environmental Science and Technology, 49(9), 791–824. https://doi.org/10.1080/10643389.2018.1558891
Song, P., Xu, D., Yue, J., Ma, Y., Dong, S., & Feng, J. (2022). Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Science of The Total Environment, 838, 156417. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.156417
Song, W.-Y., Yamaki, T., Yamaji, N., Ko, D., Jung, K.-H., Fujii-Kashino, M., An, G., Martinoia, E., Lee, Y., & Ma, J. F. (2014). A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences, 111(44), 15699 LP – 15704. https://doi.org/10.1073/pnas.1414968111
Soto, J., Ortiz, J., Herrera, H., Fuentes, A., Almonacid, L., Charles, T. C., & Arriagada, C. (2019). Enhanced Arsenic Tolerance in Triticum aestivum Inoculated with Arsenic-Resistant and Plant Growth Promoter Microorganisms from a Heavy Metal-Polluted Soil. In Microorganisms  (Vol. 7, Issue 9). https://doi.org/10.3390/microorganisms7090348
Souri, Z., Sharifan, H., de Oliveira, L. M., & Ngatia, L. (2022). Arsenic Removal by Phytoremediation Techniques. In Arsenic in Plants (pp. 267–286). https://doi.org/https://doi.org/10.1002/9781119791461.ch14
Sugawara, K., Ichio, K., Ichikawa, Y., Ogawa, H., & Suzuki, S. (2022). Effects of Pyrolysis Temperature and Chemical Modification on the Adsorption of Cd and As(V) by Biochar Derived from Pteris vittata. In International Journal of Environmental Research and Public Health (Vol. 19, Issue 9). https://doi.org/10.3390/ijerph19095226
Sun, H.-J., Rathinasabapathi, B., Wu, B., Luo, J., Pu, L.-P., & Ma, L. Q. (2014). Arsenic and selenium toxicity and their interactive effects in humans. Environment International, 69, 148–158. https://doi.org/https://doi.org/10.1016/j.envint.2014.04.019
Thakur, S., Choudhary, S., Majeed, A., Singh, A., & Bhardwaj, P. (2020). Insights into the Molecular Mechanism of Arsenic Phytoremediation. Journal of Plant Growth Regulation, 39(2), 532–543. https://doi.org/10.1007/s00344-019-10019-w
Thornton, I., & Farago, M. (1997). The geochemistry of arsenic. In C. O. Abernathy, R. L. Calderon, & W. R. Chappell (Eds.), Arsenic: Exposure and Health Effects (pp. 1–16). Springer Netherlands. https://doi.org/10.1007/978-94-011-5864-0_1
Tomasi, N., Weisskopf, L., Renella, G., Landi, L., Pinton, R., Varanini, Z., Nannipieri, P., Torrent, J., Martinoia, E., & Cesco, S. (2008). Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biology and Biochemistry, 40(7), 1971–1974. https://doi.org/https://doi.org/10.1016/j.soilbio.2008.02.017
Tripathi, S., Singh, V. K., Srivastava, P., Singh, R., Devi, R. S., Kumar, A., & Bhadouria, R. (2020). Phytoremediation of organic pollutants: current status and future directions. Abatement of Environmental Pollutants: Trends and Strategies, 81–105. https://doi.org/10.1016/B978-0-12-818095-2.00004-7
van Dillewijn, P., Caballero, A., Paz, J. A., González-Pérez, M. M., Oliva, J. M., & Ramos, J. L. (2007). Bioremediation of 2,4,6-Trinitrotoluene under Field Conditions. Environmental Science & Technology, 41(4), 1378–1383. https://doi.org/10.1021/es062165z
Vandana, U. K., Gulzar, A. B. M., Singha, L. P., Bhattacharjee, A., Mazumder, P. B., & Pandey, P. (2020). Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. Environmental Sustainability, 3(2), 169–178. https://doi.org/10.1007/s42398-020-00106-0
Vázquez, S., Agha, R., Granado, A., Sarro, M. J., Esteban, E., Peñalosa, J. M., & Carpena, R. O. (2006). Use of White Lupin Plant for Phytostabilization of Cd and As Polluted Acid Soil. Water, Air, and Soil Pollution, 177(1), 349–365. https://doi.org/10.1007/s11270-006-9178-y
von Ehrenstein, O. S., Poddar, S., Yuan, Y., Mazumder, D. G., Eskenazi, B., Basu, A., Hira-Smith, M., Ghosh, N., Lahiri, S., Haque, R., Ghosh, A., Kalman, D., Das, S., & Smith, A. H. (2007). Children’s Intellectual Function in Relation to Arsenic Exposure. Epidemiology, 18(1). https://journals.lww.com/epidem/Fulltext/2007/01000/Children_s_Intellectual_Function_in_Relation_to.10.aspx
Wan, X., Lei, M., & Chen, T. (2020). Review on remediation technologies for arsenic-contaminated soil. Frontiers of Environmental Science and Engineering, 14(2). https://doi.org/10.1007/s11783-019-1203-7
Wei, C., Song, X., Wang, Q., & Hu, Z. (2017). Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties. Ecotoxicology and Environmental Safety, 142, 40–50. https://doi.org/https://doi.org/10.1016/j.ecoenv.2017.03.040
Wiszniewska, A., Hanus-Fajerska, E., Muszyńska, E., & Ciarkowska, K. (2016). Natural Organic Amendments for Improved Phytoremediation of Polluted Soils: A Review of Recent Progress. Pedosphere, 26, 1–12. https://doi.org/10.1016/S1002-0160(15)60017-0
Wolz, S., Fenske, R. A., Simcox, N. J., Palcisko, G., & Kissel, J. C. (2003). Residential arsenic and lead levels in an agricultural community with a history of lead arsenate use. Environmental Research, 93(3), 293–300. https://doi.org/https://doi.org/10.1016/S0013-9351(03)00064-1
Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359
Yang, C., Ho, Y.-N., Makita, R., Inoue, C., & Chien, M.-F. (2020a). A multifunctional rhizobacterial strain with wide application in different ferns facilitates arsenic phytoremediation. Science of The Total Environment, 712, 134504. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134504
Yang, C., Ho, Y.-N., Makita, R., Inoue, C., & Chien, M.-F. (2020b). Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicology and Environmental Safety, 190, 110075. https://doi.org/https://doi.org/10.1016/j.ecoenv.2019.110075
Zheng, C., Wang, X., Liu, J., Ji, X., & Huang, B. (2019). Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L. Environmental Science and Pollution Research, 26. https://doi.org/10.1007/s11356-019-06688-5