Assessment of commute-related emission reduction scenarios for administrative services

Document Type : Original Research Paper


1 Department of Environment, Faculty of Natural Resources, University of Tehran, P.O.Box 31587-77871, Karaj, Iran

2 Institute of Space and Atmospheric Studies, University of Saskatchewan, P.O.Box S7N 5A2, Saskatoon, Canada


Mobile sources from administrative service commutes significantly contribute to air pollutant emissions in metropolises, underscoring the need for travel demand management (TDM) and referral reduction strategies. A software-oriented approach is crucial in metropolises like Karaj due to the high commuting volume. Evaluating pollutant emissions across scenarios offers insights for effective air pollution reduction strategies. Scenarios aim to assess air pollution management, considering software and hardware aspects. Data collection involved field interviews and questionnaires for individuals commuting to administrative offices. These challenges and considerations informed the classification of the studied vehicle fleet based on system types, production years, emission standards, fuel types, and vehicle classes. We designed scenarios to minimize standard pollutants by reducing in-person visits to administrative offices and replacing the fleet with hybrid and natural gas vehicles. Results were compared with the baseline scenario, computing emissions using the International Vehicle Emission Model (IVE). The comparative analysis highlighted that substantial pollutant reduction comes from combined commuting reduction and a decrease in referral numbers. TDM emerged as the most cost-effective strategy, executed with principled planning. In conclusion, this study's scenario exploration provides insights for policymakers and urban planners. Adopting a software-oriented approach to mitigate air pollutant emissions through commute reduction and strategic TDM can significantly enhance air quality and curb traffic-related pollution in cities like Karaj.


Main Subjects

Abdelzaher, M. A. (2022). Performance and hydration characteristic of dark white evolution (DWE) cement composites blended with clay brick powder. Egyptian Journal of Chemistry., 65(8);  419-427. 
Abdelzaher, M. A., Hamouda, A. S., Ismail, I. M., & El-Sheikh, M. (2018). Nano titania reinforced limestone cement: physico-mechanical investgation. Key engineering materials., 786; 248-257. 
Anser, M. K., Khan, K. A., Umar, M., Awosusi, A. A., & Shamansurova, Z. (2023). Formulating sustainable development policy for a developed nation: exploring the role of renewable energy, natural gas efficiency and oil efficiency towards decarbonization. International Journal of Sustainable Development & World Ecology. ; 1-17. 
Bari, C., Gangwal, A., Rahimi, Z., Srikanth, L., Singh, B., & Dhamaniya, A. (2023). Emission modeling at toll plaza under mixed traffic condition using simulation. Environmental monitoring and assessment., 195(7); 803. 
Batur, İ., & Koç, M. (2017). Travel Demand Management (TDM) case study for social behavioral change towards sustainable urban transportation in Istanbul. Cities., (69); 20-35. 
Chen, B. Y., Liu, Q., Gong, W., Tao, J., Chen, H.-P., & Shi, F.-R. (2024). Evaluation of energy-environmental-economic benefits of CNG taxi policy using multi-task deep-learning-based microscopic models and big trajectory data. Travel Behaviour and Society., 34, 100680. 
Cuba, C., Cuba, R., Arroyo, V., & Morales, J. (2021). Characterization of Air Pollution in Pre-COVID 19 Time Using the IVE Model Applied to Mobile Sources in Urban Areas. IOP Conference Series: Earth and Environmental Science, 
Elkhouly, H. I., Abdelzaher, M., & El-Kattan, I. M. (2021). Experimental and modeling investigation of physicomechanical properties and firing resistivity of cement pastes incorporation of micro-date seed waste. Iranian Journal of Science and Technology, Transactions of Civil Engineering., 1-13. 
Fallah Tabati, M., Shahabi, S., & Taghizadeh, Y. (2018). Modeling the Mode Choice Behavior of Private Vehicle Users under Urban Demand Management Policies (Case Study: Yazd City, Iran). Quarterly Journal of Transportation Engineering., 9(4); 571-595. 
Fu, M., Ge, Y., Wang, X., Tan, J., Yu, L., & Liang, B. (2013). NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns. Science of the total Environment., 452; 222-226. 
Gao, C., Gao, C., Song, K., Xing, K., & Chen, W. (2020a). Vehicle emissions inventory in high spatial–temporal resolution and emission reduction strategy in Harbin-Changchun Megalopolis. Process Safety and Environmental Protection., 138; 236- 245. 
Gao, C., Gao, C., Song, K., Xing, Y., & Chen, W. (2020b). Vehicle emissions inventory in high spatial–temporal resolution and emission reduction strategy in Harbin-Changchun Megalopolis. Process Safety and Environmental Protection., 138; 236-245. 
Geng, Y., Ma, Z., Xue, B., Ren, W., Liu, Z., & Fujita, T. (2013). Co-benefit evaluation for urban public transportation sector – a case of Shenyang, China. Journal of Cleaner Production., 58; 82-91. 
Hao, P., Wu, G., & Saikaly, P. (2015). Evaluation of sampling strategies for vehicular emission estimation 2 using probe vehicles 3. 
Hulkkonen, M., Mielonen, T., & Prisle, N. L. (2020). The atmospheric impacts of initiatives advancing shifts towards low-emission mobility: A scoping review. Science of The Total Environment., 713; 136133. 
Johansson, C., Lövenheim, B., Schantz, P., Wahlgren, L., Almström, P., Markstedt, A., Strömgren, M., Forsberg, B., & Sommar, J. N. (2017). Impacts on air pollution and health by changing commuting from car to bicycle. Science of the total Environment., 584; 55-63. 
Johnson, T. (2014). Vehicular Emissions in Review. SAE International Journal of Engines., 7(3);1207-1227. 
Karaj, C. s. o. t. a. t. i. (2014). Karaj Municipality. Management report summary, No. 21. 
Kissinger, M., & Reznik, A. (2019). Detailed urban analysis of commute-related GHG emissions to guide urban mitigation measures. Environmental Impact Assessment Review., 76; 26-35. 
Klohe, K., Koudou, B., Fenwick, A., Fleming, F., Garba, A., & Gouvras, A. (2021). A systematic literature review of schistosomiasis in urban and peri-urban settings, . PLoS Negl Trop Dis 15. 
Li, H., Shahbaz, M., Jiang, H., & Dong, K. (2021). Is natural gas consumption mitigating air pollution? Fresh evidence from national and regional analysis in China. Sustainable Production and Consumption, 27, 325-336. 
Liu, H., Qi, L., Liang, C., Deng, F., Man, H., & He, K. (2020). How aging process changes characteristics of vehicle emissions? A review. Critical Reviews in Environmental Science and Technology., 50(17); 1796-1828. 
Maleki, A. (2018). The Role of Travel Demand Management in Urban Traffic (Case Study: Tehran). Military Science and Tactics., 13(42); 87-112. 
MINAM, M. d. A. (2015). Estudio de Desempeno ˜ Ambiental (2003-2013)., 716. 
Moeinaddini, M., Taleshi, A., & Azimi Yancheshmeh, R. (2017). Spatial modeling of air pollutant emissions from mobile sources in Karaj. Department of Human Environment., 70(4); 935-947. 
Mohammadiha, A., Malakooti, H., & Esfahanian, V. (2018). Development of reduction scenarios for criteria air pollutants emission in Tehran Traffic Sector, Iran. Science of The Total Environment., 622; 17-28. 
Okokon, E. O., Yli-Tuomi, T., Turunen, A. W., Taimisto, P., Pennanen, A., Vouitsis, I., Samaras, Z., Voogt, M., Keuken, M., & Lanki, T. (2017). Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities. Environmental Research., 154; 181-189. 
Outapa, P., Ruangkawsakun, J., Khantee, W., & Thepanondh, S. (2017). DYNAMIC AIR TOXIC EMISSION FACTOR OF MOTORCYCLES IN BANGKOK, THAILAND. Environmental Engineering & Management Journal (EEMJ)., 16(12). 
Pathak, S. K., Sood, V., Singh, Y., & Channiwala, S. (2016). Real world vehicle emissions: Their correlation with driving parameters. Transportation Research Part D: Transport and Environment., 44; 157-176. 
Patiño-Aroca, M., Parra, A., & Borge, R. (2022). On-road vehicle emission inventory and its spatial and temporal distribution in the city of Guayaquil, Ecuador. Science of The Total Environment., 848; 157664. 
Popescu, S. (2022). Towards Sustainable Urban Futures: Exploring Environmental Initiatives in Smart Cities. Applied Research in Artificial Intelligence and Cloud Computing., 5(1); 84-104. 
Shahbazi, H., Abolmaali, A. M., Alizadeh, H., Salavati, H., Zokaei, H., Zandavi, R., Torbatian, S., Yazgi, D., & Hosseini, V. (2022). An emission inventory update for Tehran: The difference between air pollution and greenhouse gas source contributions. Atmospheric Research., 275, 106240. 
Shahbazi, H., Reyhanian, M., Hosseini, V., & Afshin, H. (2016). The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach. Emission Control Science and Technology., 2; 44-56. 
Shokohian, M., & Qazi Nejad, M. (2010). Traffic and its role in environmental pollution. 5th National Congress On Civil Engineering, 
Siddiqi, Z., & Buliung, R. (2013). Dynamic ridesharing and information and communications technology: past, present and future prospects. Transportation Planning and Technology., 36(6); 479-498. 
Song, X., & Hao, Y. (2019). Vehicular emission inventory and reduction scenario analysis in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health., 16(23); 4790. 
Upadhya, A. R., Kushwaha, M., Agrawal, P., Gingrich, J. D., Asundi, J., Sreekanth, V., Marshall, J. D., & Apte, J. S. (2024). Multi-season mobile monitoring campaign of on-road air pollution in Bengaluru, India: High-resolution mapping and estimation of quasi-emission factors. Science of The Total Environment, 169987. 
Vafa-Arani, H., Jahani, S., Dashti, H., Heydari, J., & Moazen, S. (2014). A system dynamics modeling for urban air pollution: A case study of Tehran, Iran. Transportation Research Part D: Transport and Environment., 31; 21-36. 
Vega-Perkins, J., Newell, J. P., & Keoleian, G. (2023). Mapping electric vehicle impacts: greenhouse gas emissions, fuel costs, and energy justice in the United States. Environmental Research Letters., 18(1); 014027. 
Velázquez, H. D., Cerón-Camacho, R., Mosqueira-Mondragón, M. L., Hernández-Cortez, J., Montoya de la Fuente, J., Hernández-Pichardo, M., Beltrán-Oviedo, T. A., & Martínez-Palou, R. (2023). Recent progress on catalyst technologies for high quality gasoline production. Catalysis Reviews., 65(4); 1079-1299. 
Viteri, R., Borge, R., Paredes, M., & Pérez, M. A. (2023). A high resolution vehicular emissions inventory for Ecuador using the IVE modelling system. Chemosphere., 315; 137634. 
Wang, H., Chen, C., Huang, C., & Fu, L. (2008). On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China. Science of the total Environment., 398(1-3); 60-67. 
Xue, Y., Nie, T., Cui, Y., Liu, X., Chen, J., Wu, X., Wu, T., & Shen, Y. (2022). Prediction of air pollution reduction benefits and atmospheric environmental quality improvement effects from electric vehicle deployment in Beijing, China. International Journal of Environmental Science and Technology., 1-10.