Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
Antony, E., N S Sreekanth., R K Sunil Kumar., & Nishanth T. (2021). Data Preprocessing Techniques for Handling Time Series data for Environmental Science Studies, International Journal of Engineering Trends and Technology, 69(5), 196-207.
Arputharaj, S., & Samuel Selvaraj, R. (2016). Prediction of surface ozone using arima, International Journal of Current Research, 41643-41646.
Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2017). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and climate extremes, 19, 29-41.
Attri A.K., Kumar U., & Jain V.K. (2001). Formation of ozone by fireworks. Nature, 411, 1015.
Basurko EA., Anta A., Barron LJR., & Albizu M. (2007) In: Borrego C, Brebbia C (eds) Air pollution XV, WIT transactions on ecology and the environment, 101, 109–118.
Beldjillali., Hicham., Bachari,, Nour El Islam., & Lamri, Nacef. (2016). Prediction of ozone concentrations according the Box-Jenkins methodology for Assekrem area, Applied Ecology and Environmental Sciences, 4, 48-52.
C. Paoli., G. Notton., M. -L. Nivet., M. Padovani., & J. -L. Savelli. (2011). A Neural Network model forecasting for prediction of hourly ozone concentration in Corsica, 10th International Conference on Environment and Electrical Engineering, 1-4.
Capilla C. (2016). Int J Sustain Dev Plan, 11(4),558.
Chandra, S., Ziemke, J. R., & Stewart, R. W. (1999). An 11-year solar cycle in tropospheric ozone from TOMS measurements. Geophysical Research Letters, 26(2), 185-188.
Chowdhury, M. H., Mondal, S., & Islam, J. (2018). Modeling And Forecasting Humidity In Bangladesh: Box-Jenkins Approach. International Journal of Research -GRANTHAALAYAH, 6(4), 50–60.
Coman A., Ionescu A., & Candau Y. (2008). Hourly ozone prediction for a 24-h horizon using neural networks, Environ Model Software, 23(12), 1407-1421.
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366), 427–431.
Duenas C., Ferna´ndez M., Canete S., Carretero J., & Liger E. (2005). Stochastic model to forecast ground-level ozone concentration at urban and rural areas, Chemosphere, 61(10), 1379-1389.
Gideon Schwarz. (1978). Estimating the Dimension of a Model, Ann. Statist., 6(2), 461 – 464.
Hamzaçebi, Coşkun. (2008). Improving artificial neural networks’ performance in seasonal time series forecasting. Inf. Sci., 178, 4550-4559.
Hiroo Hata., Kazuya Inoue., Hiroshi Yoshikado., Yutaka Genchi., & Kiyotaka Tsunemi. (2023). Impact of introducing net-zero carbon strategies on tropospheric ozone (O3) and fine particulate matter (PM2.5) concentrations in Japanese region in 2050, Science of The Total Environment, 891, 164442.
Kumar, K., Yadav, A. K., Singh, M. P., Hassan, H., & Jain, V. K. (2004). Forecasting Daily Maximum Surface Ozone Concentrations in Brunei Darussalam—An ARIMA Modeling Approach. Journal of the Air & Waste Management Association, 54(7), 809–814.
Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., & Shin, Y. (1992). Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root. Journal of Econometrics, 54, 159-178.
Li, C., Balluz, L. S., Vaidyanathan, A., Wen, X. J., Hao, Y., & Qualters, J. R. (2016). Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008. Medicine, 95(7), e2474.
Ljung, G.M., & Box, G.E. (1978). On a measure of lack of fit in time series models. Biometrika, 65, 297-303.
Mahiyuddin, W. R. W., Jamil, N. I., Seman, Z., Ahmad, N. I., Abdullah, N. A., Latif, M. T., & Sahani, M. (2018). Forecasting Ozone Concentrations Using Box-Jenkins ARIMA Modeling in Malaysia. American Journal of Environmental Sciences, 14(3), 118-128.
Maji, K. J., & Namdeo, A. (2021). Continuous increases of surface ozone and associated premature mortality growth in China during 2015-2019. Environmental pollution (Barking, Essex : 1987), 269, 116183.
Monks P.S., Archibald A.T., Colette A., Cooper O., Coyle M., Derwent R., Fowler D., Granier C., Law K.S., Mills G.E., Stevenson D.S., Tarasova O., Thouret V., & Schneidemesser E. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973.
Nariaki Sugiura. (1978). Further analysts of the data by akaike’ s information criterion and the finite corrections, Communications in Statistics - Theory and Methods, 7(1), 13-26.
Nishanth, T., Ojha, N., Kumar, M.K.S., & Naja, M. (2012). Influence of solar eclipse of 15 January 2010 on surface O3. Atmospheric Environment, 45, 1752-1758.
Pawlak I., Fernandes A., Jarosławski J., Klejnowski K., & Pietruczuk A. (2023). Comparison of 24 h Surface Ozone Forecast for Poland: CAMS Models vs. Simple Statistical Models with Limited Number of Input Parameters. Atmosphere. 14(4), 670.
Phillips, Peter., & Perron, Pierre. (1986). Testing for a Unit Root in Time Series Regression. Cowles Foundation, Yale University, Cowles Foundation Discussion Papers. 75.
Resmi CT., Nishanth T., Satheesh Kumar MK., Balachandramohan M,. & Valsaraj KT. (2020). Annular Solar Eclipse on 26 December 2019 and its Effect on trace pollutant concentrations and meteorological parameters in Kannur, India: a Coastal City, Asian J Atmos Environ, 14, 289–306.
Samuel Selvaraj, R., Sachithananthem C.P., & K.Thamizharasan. (2013). Modeling and Predicting Total Ozone Column and Rainfall in Kodaikanal, Tamilnadu By Arima Process, International Journal Of Engineering And Computer Science, 2(8), 2521-2526.
Sen, P.K. (1968) Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379-1389.
Sepp Hochreiter., & Jürgen Schmidhuber. (1997). Long Short-Term Memory. Neural Comput, 9(8), 1735–1780.
Xu, W., Lin, W., Xu, X., Tang, J., Huang, J., Wu, H., & Zhang, X. (2016). Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 1: Overall trends and characteristics, Atmos, Chem. Phys., 16, 6191–6205.
Xu, W., Xu, X., Lin, M., Lin, W., Tarasick, D., Tang, J., Ma, J., & Zheng, X. (2018). Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability, Atmos. Chem. Phys., 18, 773–798.
Zhang, A., Fu, M., Feng, X., Guo, J., Liu, C., Chen, J., Mo, J., Zhang, X., Wang, X., Wu, W., Hou, Y., Yang, H., & Lu, C. (2023). Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution. Geophysical Research Letters, 50(8), e2022GL102611.