Physical Characteristics and Topographic Composition of Infectious Waste Combustion Residues in Toxic Hazardous Waste Processing Companies

Document Type : Original Research Paper

Authors

Department of Environmental Science, Faculty of Mathematics and Natural Science, Universitas Sebelas Maret, Surakarta, Indonesia

10.22059/poll.2025.386840.2694

Abstract

The residue produced and left behind under the burning furnace (incinerator) from the burning of infectious waste is a category of hazardous and toxic waste. The residue from combustion contains heavy metals, which can harm the environment and the health of living creatures. Good management must be implemented to reduce the resulting impacts, one of which is utilization. Appropriate utilization can be done by knowing the characteristics of combustion residues both physically and topographically. The main objective of this research is to analyze the physical characteristics of infectious waste combustion residues and topographic composition. Physical characteristics include water content parameters using SNI 03–1971–1990, mud content parameters using the settling method, gradation parameters using the sieve method, specific gravity parameters using SNI 1970:2008, and water absorption parameters using oven drying. Topographic composition was analyzed using Scanning Electron Microscopy (SEM). The water content obtained in the residue was 9.55%, the mud content was 34.1%, the specific gravity result was 1.82, and the gradation of the ash fell into the zone 2 category, indicating that the fine aggregate tested fell into the medium sand size category, water absorption/absorption shows 10.65%. SEM results show the presence of crystalline particles with sharp edges and flat surfaces, as well as amorphous particles that are more irregular and hollow. Utilization can be done on residues from burning medical waste, one of which is as a substitute for sand in the medium category. Utilization can be made into several products that use medium category sand and are given a additives or pozzolan mixture to prevent leaching.

Keywords

Main Subjects


Ahmed, T., Al Biruni, M. T., Azad, S., & Hasan, M. (2024). Medical waste incineration fly ash as an effective adsorbent for removing dyes from textile effluent and methylene blue from synthetic aqueous solutions. Case Studies in Chemical and Environmental Engineering, 9(November 2023), 100681. https://doi.org/10.1016/j.cscee.2024.100681 
ASTM C 566 - 97 Standard Test Method For Total Evaporable Moisture Content Of Aggregate By Drying.
ASTM C117-17 Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C128-22 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate
Azka, C. N., Rani, H. A., & Katami, T. M. R. (2023, February). Characteristic of Asphalt Mixture using Fly Ash and Bottom Ash Substitution in Reducing Environment Pollution. In IOP Conference Series: Earth and Environmental Science (Vol. 1140, No. 1, p. 012018). IOP Publishing.
Bilen, M., Kizgut, S., & Akkaya, B. (2015). Prediction of unburned carbon in bottom ash in terms of moisture content and sieve analysis of coal. Fuel Processing Technology, 138, 236-242.
Cano, D. M. G., Gómez, D. P., Escobar, S. R., Jaramillo, Y. P. A., Correa, R. A. B., & Botero, J. C. O. (2023). Moisture correction in mixtures using innovative thermogravimetric technique to determine water absorption in different Colombian fine aggregates. Revista EIA, 20(39), 3906-pp.
Damayanty, S., Susanto, A., & Hipta, W.F., 2022. Implementation of Hospital Occupational Health and Safety Standards at General Hospitals in Kendari City. Kemas, 18(1), pp.10–19.
Debrah, J. K., & Dinis, M. A. P. (2023). Chemical characteristics of bottom ash from biomedical waste incinerators in Ghana. Environmental Monitoring and Assessment, 195(5). https://doi.org/10.1007/s10661-023-11132-w
Dehghanifard, E., & Dehghani, M.H., 2018. Evaluation and Analysis of Municipal Solid Wastes in Tehran, Iran. MethodsX, 5, pp.312– 321.
El-Amaireh, N. A. A., Al-Zoubi, H., & Al-Khashman, O. A. (2023). Hospital waste incinerator ash: characteristics, treatment techniques, and applications (A review). Journal of Water and Health, 21(11), 1686–1702. https://doi.org/10.2166/wh.2023.299
Fatika, R. D., Mahardana, Z. B., Lailiya, H., Fahmi, M. I. F., Ardianto, R. P., & Widyakrama, O. T. (2023). Meningkatkan Kapasitas Kuat Tekan Beton dengan Kendala Kadar Lumpur Agregat Halus. CIVED, 10(1), 190-201.
Ginting, S. B., Sinaga, O. P., Aihite, A. Y. A., Simanjutntak, P. B., Sinaga, E. K., & Napitupulu, E. (2022). Penyelidikan Berat Jenis dan Daya Serap Untuk Agregat Halus. JUTEKS: Jurnal Teknik Sipil, 7(1), 12-15.
Husin, A. A., & R. S. (2008). Pengaruh Penambahan Foam Agent Terhadap Kualitas Bata Beton. Jurnal Permukiman, 3(3), 196-207.
Hudori, M., Tandedi, M., Sentanu, A. T., & Ferdinand, M. A. (2022). Studi Pengujian Kadar Lumpur Agregat Halus Pada Pasir Di Kota Batam. Racic: Rab Construction Research, 7(1), 96-103.
Li, B., Yang, F., Du, P., & Liu, Z. (2022). Study on the triaxial unloading creep mechanical properties and creep model of shale in different water content states. Bulletin of Engineering Geology and the Environment, 81(10), 420.
Li, Z., Liu, J., Xiao, J., & Zhong, P. (2019). A method to determine water absorption of recycled fine aggregate in paste for design and quality control of fresh mortar. Construction and Building Materials, 197, 30-41.
Kirthika, S. K., Singh, S. K., & Chourasia, A. (2020). Alternative fine aggregates in production of sustainable concrete-A review. Journal of cleaner production, 268, 122089.
Kushartomo, W., Sutandi, A., & Linggasari, D. (2020). Memperkirakan perbandingan kadar air semen pada beton keras. Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan, 4(1), 177-186.
Md Anamul, H., Rahman, J., & Tanvir, M. (2012). Zn and Ni of Bottom Ash as a Potential Diffuse Pollutant and Their Application as “Fine Aggregate.” Journal of Civil Engineering Research, 2(6), 64–72. https://doi.org/10.5923/j.jce.20120206.03
Osholana, T. S., Dludlu, M. K., Oboirien, B., & Sadiku, R. (2020). Enhanced reactivity of geopolymers produced from fluidized bed combustion bottom ash. South African Journal of Chemical Engineering, 34, 72-77.
Papamarkou, S., Sifaki, C., Tsakiridis, P. E., Bartzas, G., & Tsakalakis, K. (2018). Synthetic wollastonitic glass ceramics derived from recycled glass and medical waste incinerator fly ash. Journal of Environmental Chemical Engineering, 6(5), 5812–5819. https://doi.org/10.1016/j.jece.2018.09.006
Patchaiyappan, A., Dowarah, K., Zaki Ahmed, S., Prabakaran, M., Jayakumar, S., Thirunavukkarasu, C., & Devipriya, S. P. (2021). Prevalence and characteristics of microplastics present in the street dust collected from Chennai metropolitan city, India. Chemosphere, 269, 128757. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.128757 
Prasetyo, T. F., Isdiana, A. F., & Sujadi, H. (2019). Implementasi alat pendeteksi kadar air pada bahan pangan berbasis internet of things. SMARTICS Journal, 5(2), 81-96.
Pohan, H. J. P., Rambe, M. R., & Pakpahan, A. (2023). Perbandingan Agregat Kasar Dan Agregat Halus Dikecamatan Arse Ditinjau Dari Kuat Tekan Beton. STATIKA, 6(1), 62-70.
Rachmawati, S., Syafrudin, S., & Budiyono, B. (2022). Assessment Of Health Service Facility Ash Waste Based On Policy (Case Study Of Moewardi Hospital Surakarta). In IOP Conference Series: Earth and Environmental Science (Vol. 1098, No. 1, p. 012003). IOP Publishing.
Rachmawati, S., Syafrudin, S., Budiyono, B., & Fitri, S. N. (2024). Performance of Medical Waste Ash As a Paving Block: Impacts To Air Quality and Heavy Metals in Product.  Journal of Sustainability Science and Management, 19(9), 64–75. https://doi.org/10.46754/jssm.2024.09.004
Rahmaulina, D., Hartati, E., & Marganingrum, D. (2022). Studi Pendahuluan Pemanfaatan Sludge IPAL Industri Tekstil Sebagai Bahan Baku Briket: Study of Utilization Textile Industry Sludge from WWTP as Raw Material for Briquettes. Jurnal Teknologi Lingkungan, 23(1), 035-043
Rangkuti, D. S. R., Tarigan, A. M., & Amelia, T. (2023). Faktor Yang Memengaruhi Perilaku Perawat Dalam Pemilahan Limbah Medis Di Ruang Rawat Inap Rumah Sakit Umum Sundari Medan. Journal Of Pharmaceutical and Sciences, 6(1), 322-333.
Ren, L., Ding, L., Guo, Q., Gong, Y., Yu, G., & Wang, F. (2023). Characterization, carbon-ash separation and resource utilization of coal gasification fine slag: A comprehensive review. Journal of Cleaner Production, 136554.
Rini, I. D. W. S., Maria, M., Anifah, E. M., Saputra, A. A. I., Gunawan, A., & Arobi, A. I. (2022). Analisis Dampak Lingkungan Pengolahan Limbah Fly Ash dan Bottom Ash dengan Metode Siklus Daur Hidup (Life Cycle Assessment/LCA) di Industri Pembangkit Listrik Tenaga Uap. SPECTA Journal of Technology, 6(3), 263-272.
Rizali, M., Friscila, I., & Wijaksono, M. A. (2022). Insinerator Limbah Medis dari Fasilitas Pelayanan Kesehatan Di Banjarmasin. Jurnal IMPACT: Implementation and Action, 4(2).
SNI 03-4142-1996, “Metode Pengujian Jumlah Bahan dalam Agregat yang Lolos Saringan No. 200 (0,75 mm)”
SNI 03 1970 1990 Metode Pengujian Kadar Air Agregat Dengan Pengeringan.
SNI 03-1970-2008 tentang Cara Uji Berat Jenis dan. Penyerapan Air Agregat Halus.
Sni 03-6861.1-2002: Spesifikasi Bahan Bangunan (Building Material Specification Part A: Non-Metal Building Materials)
Sugiarto, A. (2011). Komposisi Campuran Optimum Bata Beton Berlubang dengan Limbah Batubara dari Industri Tekstil”, Jurnal Permukiman, 6(1), hlm. 47–52.
Triyanto, D., Putra, A. D., & Wahono, E. P. (2022). Dampak Mekanis dari Batu Lempung yang Disebabkan oleh Slaking. JGE (Jurnal Geofisika Eksplorasi), 8(3), 156-170.
Tzanakos, K., Mimilidou, A., Anastasiadou, K., Stratakis, A., & Gidarakos, E. (2014). Solidification/stabilization of ash from medical waste incineration into geopolymers. Waste Management, 34(10), 1823–1828. https://doi.org/10.1016/j.wasman.2014.03.021
Ullah, A., Kassim, A., Abbil, A., Matusin, S., Rashid, A. S. A., Yunus, N. Z. M., & Abuelgasim, R. (2019, May). Evaluation of coal bottom ash properties and its applicability as engineering material. In IOP Conference Series: Earth and Environmental Science (Vol. 498, No. 1, p. 012044). IOP Publishing.
Utomo, S., Rosanti, I., Muhtadi, A., & Sasongko, H. W. (2022). Jurnal ANALISA SIFAT FISIS AGREGAT LIMBAH BAHAN BAKAR BATU BARA DAN PEMANFAATANNYA UNTUK BAHAN BANGUNAN NON STRUKTUR. Jurnal Poli-Teknologi, 21(1), 11-17.
Widowati, E., Koesyanto, H., Wahyuningsih, A.S., Mayasari, R.A.D., Pitaloka, F.R.D., Mambe, S., Agustiani, N.H., As-Syifa, A.F.S., & Permanahadi, A., 2022. Implementation of Covid-19 Health Standard at Elementary School in Yogyakarta. Kemas, 17(3), pp.462– 474.
Xuan, D., Tang, P., & Poon, C. S. (2018). Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications–A review. Construction and Building Materials, 190, 1091-1102.
Yadav, P., & Mahakavi, D. P. Characterization, Microstructures Analysis on Geo-Polymerized Bottom Ash Amorphous Sand. Microstructures Analysis on Geo-Polymerized Bottom Ash Amorphous Sand.
Yurnalisdel, Y. (2023). Analisis Pengelolaan Limbah Bahan Berbahaya dan Beracun (B3) di Indonesia. Jurnal Syntax Admiration, 4(2), 201-208.